5.1. Non-dimensional equations of electromagnetism#

Continuity equation of electric charge.

\[\partial_t \rho + \nabla \cdot \vec{j} = 0\]

Maxwell’s equations.

\[\begin{split}\begin{cases} \nabla \cdot \vec{e} = \dfrac{\rho}{\varepsilon_0} \\ \nabla \times \vec{e} + \partial_t \vec{b} = \vec{0} \\ \nabla \cdot \vec{b} = 0 \\ \nabla \times \vec{b} - \frac{1}{c_0^2} \partial_t \vec{e} = \mu_0 \vec{j} \end{cases}\end{split}\]

Potentials.

\[\begin{split}\begin{aligned} \vec{b} & = \nabla \times \vec{a} \\ \vec{e} & = -\partial_t \vec{a} - \nabla \phi \\ \end{aligned}\end{split}\]

Gauge. Wave equations.

Assuming characteristic dimensions of the physical quantities involved in the problem exist, and allow to write the governing equations in non-dimensional form with contributions with (approximately at least) the same order of magnitude,

\[ f R \, \partial_t \rho + \dfrac{J}{L} \nabla \cdot \vec{j} = 0 \qquad , \qquad \partial_t \rho + \dfrac{J}{f L R} \nabla \cdot \vec{j} = 0 \]
\[\begin{split} \begin{cases} \dfrac{E}{L} \nabla \cdot \vec{e} - \dfrac{R}{\varepsilon_0} \rho = 0 \\ \dfrac{E}{L} \nabla \times \vec{e} + {B f} \, \partial_t \vec{b} = \vec{0} \\ \dfrac{B}{L} \nabla \cdot \vec{b} = 0 \\ \dfrac{B}{L} \nabla \times \vec{b} - \dfrac{E f}{c_0^2} \partial_t \vec{e} = \mu_0 J \, \vec{j} \end{cases} \qquad , \qquad \begin{cases} \nabla \cdot \vec{e} - \dfrac{R L}{\varepsilon_0 E} \rho = 0 \\ \nabla \times \vec{e} + \dfrac{B f L}{E} \, \partial_t \vec{b} = \vec{0} \\ \dfrac{B}{L} \nabla \cdot \vec{b} = 0 \\ \nabla \times \vec{b} - \dfrac{E f L}{c_0^2 B} \partial_t \vec{e} = \dfrac{\mu_0 J L}{B} \, \vec{j} \end{cases} \end{split}\]
\[\begin{split} \begin{aligned} B \vec{b} & = \dfrac{A}{L} \nabla \times \vec{a} \\ E \vec{e} & = - A f \, \partial_t \vec{a} - \frac{\Phi}{L} \nabla \phi \\ \end{aligned} \qquad , \qquad \begin{aligned} \vec{b} & = \dfrac{A}{B L} \nabla \times \vec{a} \\ \vec{e} & = - \dfrac{A f}{E} \, \partial_t \vec{a} - \frac{\Phi}{E L} \nabla \phi \\ \end{aligned} \end{split}\]
\[ \dfrac{A}{L} \nabla \cdot \vec{a} + \dfrac{f \Phi}{c_0^2} \partial_t \phi = 0 \qquad , \qquad \nabla \cdot \vec{a} + \frac{\Phi f L}{c_0^2 A} \partial_t \phi = 0 \]

All these relations but Ampére-Maxwell’s law and the definition of the electric field in terms of the potentials contains at most two terms: these relations can be used to immediately find the relation between the scales of the problem (if they’re not independent), by setting the non-dimensional numbers equal to \(1\),

\[\begin{split}\begin{aligned} R & = \frac{\varepsilon_0 E}{L} && \text{from Gauss' law for $\vec{e}$} \\ E & = B f L && \text{from Faraday's law} \\ A & = B L && \text{from the definition $\vec{b} = \nabla \times \vec{a}$} \\ A & = \dfrac{\Phi f L}{c_0^2} && \text{from Lorentz's gauge} \\ \end{aligned}\end{split}\]

while Ampére-Maxwell’s equation and the definition of the electric field as a function of the electromagnetic potentials can be used to compare to define different regimes, comparing the non-dimensional numbers appearing in these relations

\[\begin{split}\begin{aligned} \nabla \times \vec{b} & = \dfrac{\mu_0 J L}{B} \vec{j} + \dfrac{E f L}{c_0^2 B} \partial_t \vec{e} = && (E = B f L) \\ & = \dfrac{\mu_0 J L}{B} \vec{j} + \left(\dfrac{f L}{c_0}\right)^2 \partial_t \vec{e} = \\ & = \dfrac{\mu_0 J L}{B} \left[ \vec{j} + \dfrac{B}{\mu_0 J L} \left(\dfrac{f L}{c_0}\right)^2 \partial_t \vec{e} \right] \\ \end{aligned}\end{split}\]
\[\begin{split}\begin{aligned} \vec{e} & = - \dfrac{\Phi}{E L} \left[ \nabla \phi + \dfrac{A f L}{\Phi} \partial_t \vec{a} \right] = && \left( A = \dfrac{\Phi f L}{c_0^2} \right) \\ & = - \dfrac{\Phi}{E L} \left[ \nabla \phi + \left( \dfrac{f L}{c_0} \right)^2 \partial_t \vec{a} \right] \end{aligned}\end{split}\]