11.4.4. Electromagnetic circuits#

Exercise 11.15 (Exam 2025-01-22, Exercise 3.)

../_images/exam-2025-01-22-ese-03.png
Solution

  1. Equivalent magnetic network of the inductive part of the system. The equivalent reluctance seen by the magnetic flux generator \(m_A = N i_A\) is

    \[\theta_{eq} = \theta_2 + \left( \theta_1 \parallel \theta_3 \right) \ .\]

    and thus the flux through it reads

    \[\phi_A = \frac{m_A}{\theta_{eq}} = \frac{N}{\theta_{eq}} i = \dots\]

    The parallel part of the circuit acts as a current divider and thus magnetic fluxes through gaps \(1\) and \(3\) are

    (11.2)#\[\begin{split}\begin{aligned} \phi_1 & = \frac{\theta_3}{\theta_1 + \theta_3} \phi_A = \frac{\theta_3}{\theta_1 + \theta_3} \frac{N}{\theta_{eq}} i_A = \dots \\ \phi_3 & = \frac{\theta_1}{\theta_1 + \theta_3} \phi_A = \frac{\theta_1}{\theta_1 + \theta_3} \frac{N}{\theta_{eq}} i_A = \dots \\ \end{aligned}\end{split}\]

    Faraday’s law provides the relation between the voltage and the concatenated flux,

    \[v_A = \dot{\psi} = N \dot{\phi}_A = \frac{N^2}{\theta_{eq}} \dfrac{d i_A}{dt} = L_{eq} \dfrac{di}{dt} \ ,\]

    where the equivalent inductance of the magnetic circuit

    \[L_{eq} = \dots\]

    has been introduced. This relation becomes \(v_A = 0\) in steady regime.

  2. The electric network can be solved evaluating Thevenin equivalent network at the inductive port,

    \[\begin{split}\begin{aligned} v_{Th} & = \frac{R_3}{R_2 + R_3} e + R_1 a \\ R_{Th} & = R_1 + R_2 + \left( R_3 \parallel R_4 \right) \ , \end{aligned}\end{split}\]

    Thus the KVL on the equivalent complete network is

    \[v_{Th} - R_{Th} i_A - L \dfrac{d i_A}{d t} = 0 \ . \]

    In steady regime, \(\frac{d}{dt} \equiv 0\), and thus

    (11.3)#\[\overline{i}_A = \dfrac{v_{Th}}{R_{Th}} = \dots \]
  3. Energy stored in the magnetic field is the sum (integral) of the contribution \(\frac{1}{2 \mu} \left|\vec{b}\right|^2\) in electromagnetic energy density, \(u\). With the assumption of negligible reluctance of the ferromagnetic medium,

    \[\begin{split}\begin{aligned} \int_{V} \frac{1}{2 \mu} \left| \vec{b} \right|^2 & \sim \int_{V_{gaps}} \frac{1}{2 \mu_0} \left| \vec{b}(\vec{r},t) \right|^2 = \\ & \sim \sum_{k \in \text{gaps}} \frac{1}{2 \mu_0} b_k^2 \, V_k = \\ & \sim \sum_{k \in \text{gaps}} \frac{1}{2 \mu_0} \left(\frac{\phi_k}{A_k}\right)^2 \, A_k \, \delta_k = \\ & \sim \sum_{k \in \text{gaps}} \frac{1}{2} \frac{\delta_k}{\mu_0 A_k} \phi_k^2 = \\ & \sim \sum_{k \in \text{gaps}} \frac{1}{2} \theta_k \phi_k^2 = \dots \ . \end{aligned}\end{split}\]

    Fluxes can be evaluated with relations (11.2), once the current \(i_A\) is known, from (11.3).

  4. After solving the electric circuit (e.g. introducing two loop currents in the left and right loops), powers through resistors and generators read

    \[\begin{split}\begin{aligned} P_{R_1} & = R_1 \, i_1^2 = R_1 (i_A - a)^2 = \dots \\ P_{R_2} & = R_2 \, i_2^2 = R_2 i_A^2 = \dots \\ P_{R_3} & = R_3 \, i_3^2 = R_3 (i_A - i_{e,1})^2 = \dots \\ P_{R_4} & = R_4 \, i_4^2 = R_4 (i_A + i_{e,1})^2 = \dots \\ \end{aligned}\end{split}\]
    \[\begin{split}\begin{aligned} P_a & = v_a a = R_1 (i_A-a) \, a = \dots \\ P_e & = e i_e = e ( -i_A + i_{e,1} ) = \dots \\ \end{aligned}\end{split}\]

    with \(i_{e,1} = \frac{e}{R_3 + R_4}\).

Exercise 11.16 (Exam 2024-06-19, Exercise 2.)

../_images/exam-2024-06-19-ese-02.png
Solution - todo

Exercise 11.17 (Exam 2024-02-13, Exercise 1a.)

../_images/exam-2024-02-13-ese-01-a.png
Solution - todo