9.1. Transformer#

  • Magnetic field flux, assuming a uniform field or in terms of the average field:

    \[\phi = b \, A\]
  • Magnetic field flux linked to \(N\) windings:

    \[\psi = N \, \phi\]
  • Relationship between the voltage at the inductor terminals and the linked flux, applying Faraday’s law to irrotational parts:

    \[v = \dot{\psi}\]

9.1.1. Ideal Transformer#

In the absence of stray fluxes and reluctance in the air gap, the loop law in the air gap implies:

\[0 = m_1 + m_2 = N_1 \, i_1 + N_2 \, i_2\]

The magnetic field flux can be written in terms of the flux linked to the windings:

\[\phi = \frac{\psi_1}{N_1} = \frac{\psi_2}{N_2}\]

The time derivative of this relation, with a constant number of windings over time, implies:

\[\frac{v_2}{N_2} = \frac{v_1}{N_1} \ .\]

9.1.2. Transformer with Stray Fluxes#

\[\begin{split}\begin{cases} \phi_1 - \phi_{1,d} = \phi \\ \phi_2 - \phi_{2,d} = \phi \\ m_1 = \theta_{1,d} \phi_{1,d} \\ m_2 = \theta_{2,d} \phi_{2,d} \\ m_1 + m_2 = 0 \end{cases}\end{split}\]
\[\rightarrow \qquad 0 = m_1 + m_2 = N_1 \, i_1 + N_2 \, i_2\]
\[\begin{split}\begin{aligned} 0 & = \phi_2 - \phi_1 - \phi_{2,d} + \phi_{1,d} \\ & = \phi_2 - \phi_1 - \frac{m_2}{\theta_{2,d}} + \frac{m_1}{\theta_{1,d}} \\ \end{aligned}\end{split}\]
\[\rightarrow \qquad \frac{\psi_2}{N_2} - \frac{m_2}{\theta_{2,d}} = \frac{\psi_1}{N_1} - \frac{m_1}{\theta_{1,d}} \ .\]
\[\rightarrow \qquad \frac{1}{N_2} \left( v_2 - \frac{N_2^2}{\theta_{2,d}} \dfrac{d i_2}{d t} \right) = \frac{1}{N_1} \left( v_1 - \frac{N_1^2}{\theta_{1,d}} \dfrac{d i_1}{d t} \right) \ .\]

9.1.3. Transformer with Stray Fluxes and Reluctance \(\theta_{Fe}\) in the Air Gap#

\[\begin{split}\begin{cases} \phi_{1} - \phi_{1,d} = \phi \\ \phi_{2} - \phi_{2,d} = \phi \\ m_{1} = \theta_{1,d} \phi_{1,d} \\ m_{2} = \theta_{2,d} \phi_{2,d} \\ m_1 + m_2 = \theta_{Fe} \, \phi \end{cases}\end{split}\]

todo complete and verify the calculations; draw the equivalent circuit