11.4.1. Transient dynamics of linear electrical grids with one dynamic component#

Exercise 11.1 (Exam 2025-02-11, Exercise 1.)

../_images/exam-2025-02-11-ese-01.png
Solution

Following the guidelines for the solution, a many-port Thevenin equivalent circuit of the resistive part of the circuit is found, with two ports for interfacing with the capacitor (A) and with the switch. The dynamical equation of the system is written in state-space representation, writing the voltage at the ports and the unknown variable \(i(t)\) as outputs; the capacitor contitutive equation is used to find the time evolution of the system once the switch is closed

../_images/exam-2025-02-11-ese-01-b.png
Internal generators on, open circuit

Solution using two loop currents, \(i_1\) in the upper part of the circuit and \(i_2\) in the lower triangle. Using KVL

\[\begin{split}\begin{aligned} 0 & = e_1 - R_2 i_{1,0} - R_1 (a + i_{1,0}) \\ \rightarrow \quad i_{1,0} & = \dfrac{1}{R_1+R_2} e_1 - \frac{R_1}{R_1 + R_2} a \\ \end{aligned}\end{split}\]

so that the desired variables read

\[\begin{split}\begin{cases} v_{A,0} & = R_3 a - R_2 i_{1,0} = \left[ R_3 + \dfrac{R_1 R_2}{R_1 + R_2} \right] a - \dfrac{R_2}{R_1+R_2} e_1 \\ v_{B,0} & = e_2 - (R_3 + R_4) a \\ i_{0} & = a \end{cases}\end{split}\]
\[\begin{split}\begin{cases} v_{A,0} & = \quad\ 7.67 \, V \\ v_{B,0} & = -13.00 \, V \\ i_{0} & = \quad\ 3.00 \, A \\ \end{cases}\end{split}\]
../_images/exam-2025-02-11-ese-01-c.png
Internal generators off, current generators at the ports

Callling \(i_A\) and \(i_B\) the current passing through the current generators connected at the ports. The solution is found powering one generation at a time and then exploiting PSCE

Powering A

Powering B.

Currents in the two parallel branches in the upper part of the circuit (current dividers) read

\[\begin{split}\begin{cases} i & = i_A \\ v_A & = \left[ R_3 + \dfrac{R_1 R_2}{R_1 + R_2} \right] \, i_A - R_3 \, i_B \\ v_B & = -R_3 \, i_A + (R_3 + R_4) \, i_B \end{cases}\end{split}\]
../_images/exam-2025-02-11-ese-01-a.png

The equations of the equivalent algebraic system are

\[\begin{split}\begin{cases} v_A & = v_{A,0} + R_{AA} \, i_A + R_{AB} \, i_B \\ v_B & = v_{B,0} + R_{BA} \, i_A + R_{BB} \, i_B \\ i & = i_{ ,0} + i_{/i_A} \, i_A + i_{/i_B} \, i_B \\ \end{cases}\end{split}\]
\[\begin{split} \begin{bmatrix} v_A(t) \\ v_B(t) \end{bmatrix} & = \begin{bmatrix} v_{A0} \\ v_{B0} \end{bmatrix} + \begin{bmatrix} R_3 + \frac{R_1 R_2}{R_1 + R_2} & -R_3 \\ -R_3 & R_3 + R_4 \end{bmatrix} \begin{bmatrix} i_A(t) \\ i_B(t) \end{bmatrix} \\ i(t) & = i_0 + i_A(t) \end{split}\]
\[\begin{split}\begin{aligned} \det \mathbf{R} & = \left( R_3 + \frac{R_1 R_2}{R_1 + R_2} \right) \left( R_3 + R_4 \right) - R_3^2 = \\ & = ( R_3 + R_4 ) \left( R_3 + \frac{R_1 R_2}{R_1 + R_2} - \dfrac{R_3^2}{R_3 + R_4} \right) = \\ & = ( R_3 + R_4 ) \left( \frac{R_1 R_2}{R_1 + R_2} + \dfrac{R_3 R_4}{R_3 + R_4} \right) \ . \end{aligned}\end{split}\]

Steady solution for \(t \le 0^-\). With switch open \(i_B = 0\) and steady conditions \(i_A = C \dot{v}_A = 0\),

\[\begin{split}\begin{cases} v_A(0^-) & = v_{A,0} = \quad\ 7.67 \, V \\ v_B(0^-) & = v_{B,0} = -13.00 \, V \\ i(0^-) & = i_{ ,0} = \quad\ 3.00 \, A \\ \end{cases}\end{split}\]

Transient dynamics, when the switch closes \(v_B(t \ge 0^+) = 0\),

\[i_A(t) = \dfrac{R_3 + R_4}{\det \mathbf{R}} \Delta v_A(t) + \dfrac{R_3}{\det \mathbf{R}} \Delta v_B(t)\]
  • Tension across the switch

    \[\begin{split}\begin{aligned} v_{B}(t) & = v_{B,0} \, h(-t) \\ \Delta v_{B}(t) & = v_B(t) - v_{B,0} = - v_{B,0} \, h(t) \ . \end{aligned}\end{split}\]
  • Tension across the capacitor. The dynamical equation for the difference of the state variable reads

    \[\begin{split}\begin{aligned} 0 & = i_A + C \dot{v}_A = \\ & = \dfrac{R_3 + R_4}{\det \mathbf{R}} \Delta v_A(t) + \dfrac{R_3}{\det \mathbf{R}} \Delta v_B(t) + C \dot{v}_A \ . \end{aligned}\end{split}\]

    As \(v_{A}(t=0) = v_{A,0}\) (no jump in state variables without impulsive forcing), \(\Delta v_A = v_A - v_{A,0}\), and \(\frac{d}{dt} \Delta v_A = \frac{d}{dt} v_A\), the dynamical equation reads

    \[\begin{split}\begin{cases} \dfrac{\det \mathbf{R}}{R_3 + R_4} C \dfrac{d}{dt}\Delta v_A + \Delta v_{A} = - \dfrac{R_3}{R_3 + R_4} \Delta v_{B}(t) = \dfrac{R_3}{R_3 + R_4} \, v_{B,0} \, h(t) \\ \\ \Delta v_A(0^-) = 0 \ . \end{cases}\end{split}\]
    \[\begin{aligned} \Delta v_A(t) & = \frac{R_3}{R_3 + R_4} v_{B,0} \left[ 1 - \exp\left( - \dfrac{t}{\tau} \right) \right] \, h(t) \ , \end{aligned}\]

    having defined the time constant and the equivalent reistence seen by the capacitor

    \[\begin{split}\begin{aligned} R_{eq} & := \dfrac{\det \mathbf{R}}{R_3+R_4} = \dfrac{R_1 R_2}{R_1 + R_2} + \dfrac{R_3 R_4}{R_3 + R_4} = \frac{50}{21} \, V = 2.381 \, V \\ \\ \tau & := R_{eq} C = 1.1905 \, s \end{aligned}\end{split}\]

    Tension through the capacitor reads

    \[\begin{split}\begin{aligned} v_A(t) & = v_{A,0} + \delta v_A(t) = \\ & = v_{A,0} + \Delta v_{A,+\infty} \, \left[ 1 - \exp\left( - \dfrac{t}{\tau} \right) \right] \, h(t) \ , \end{aligned}\end{split}\]

    so that the values

    \[\begin{split}\begin{aligned} v_A(0^+) & = v_{A,0} = 7.67 \, V \\ v_A(+\infty) & = v_{A,0} + \Delta v_{A,+\infty} = ( 7.667 - 5.571 ) \, V = 2.095 \, V \ . \end{aligned}\end{split}\]
  • Current through the capacitor.

    \[\begin{split}\begin{aligned} i_A(t) & = \dfrac{R_3+R_4}{\det \mathbf{R}} \Delta v_A(t) + \dfrac{R_3}{\det \mathbf{R}} \Delta v_B(t) = \\ & = \dfrac{R_3+R_4}{\det \mathbf{R}} \frac{R_3}{R_3 + R_4} v_{B,0} \left[ 1 - \exp\left( - \dfrac{t}{\tau} \right) \right] \, h(t) - \dfrac{R_3}{\det \mathbf{R}} v_{B,0} \, h(t) = \\ & = - \dfrac{R_3}{\det \mathbf{R}} v_{B,0} \exp\left( - \dfrac{t}{\tau} \right) \, h(t) \\ & = 2.34 \, A \, \exp\left( - \dfrac{t}{\tau} \right) \, h(t) \ . \end{aligned}\end{split}\]

    so that the values

    \[\begin{split}\begin{aligned} i_A(0^+) & = 2.34 \, A \\ i_A(+\infty) & = 0.00 \, A \end{aligned}\end{split}\]
  • Current \(i(t)\)

    \[\begin{split}\begin{aligned} i(t) & = i_{,0} + i_A(t) = \\ & = a - \dfrac{R_3}{\det \mathbf{R}} v_{B,0} \exp\left( - \dfrac{t}{\tau} \right) \, h(t) \\ & = 3.00 \, A + 2.34 \, A \, e^{-\frac{t}{\tau}} h(t) \ , \end{aligned}\end{split}\]

    so that the values

    \[\begin{split}\begin{aligned} i(0^+) & = 5.35 \, A \\ i(+\infty) & = 3.00 \, A \end{aligned}\end{split}\]

Energy stored in the capacitor at \(t = 0\). Energy in the capacitor reads

\[E_C(t) = \dfrac{1}{2} C v_A^2(t) \ .\]

At \(t = 0\), \(v_A(0) = 7.667 \, V\) and \(E_C(0) = 14.694 \, J \).

Exercise 11.2 (Exam 2025-01-22, Exercise 1.)

../_images/exam-2025-01-22-ese-01.png
Solution

Following the guidelines for the solution, a many-port Thevenin equivalent circuit of the resistive part of the circuit is found, with two ports for interfacing with the capacitor (A) and with the switch. The dynamical equation of the system is written in state-space representation, writing the voltage at the ports and the unknown variable \(i(t)\) as outputs; the capacitor contitutive equation is used to find the time evolution of the system once the switch is closed

../_images/exam-2025-01-22-ese-01-b.png
Internal generators on, open circuit

Solution using two loop currents, \(i_1\) in the upper part of the circuit and \(i_2\) in the lower triangle. Using KVL

\[\begin{split}\begin{aligned} 0 & = e_2 - (R_7+R_8+R_1+R_4+R_6) i_{2,0} \\ 0 & = e_1 - (R_2+R_3) i_{1,0} \\ \end{aligned} \end{split}\]
\[\begin{split} \begin{aligned} i_{2,0} & = \dfrac{1}{R_{14678}} \, e_2 \\ i_{1,0} & = \dfrac{1}{R_{23}} \, e_1 \\ \end{aligned}\end{split}\]

with \(R_{14678} = R_1+R_4+R_6+R_7+R_8\), and \(R_{23} = R_2 + R_3\). The desired physical quantities are

\[\begin{split}\begin{cases} v_{A,0} & = - R_8 i_{2,0} = -\dfrac{R_8}{R_{14678}} e_2 \\ v_{B,0} & = - R_4 i_{2,0} + R_3 i_{1,0} = - \dfrac{R_4}{R_{14678}} e_2 + \dfrac{R_3}{R_{23}} e_1 \\ i_{0} & = - i_{2,0} = - \dfrac{1}{R_{14678}} e_2 \end{cases}\end{split}\]

and their values

\[\begin{split}\begin{cases} v_{A,0} & = - 20.6900 \, V \\ v_{B,0} & = \ \ \ 12.4750 \, V \\ i_{0} & = \ - 1.7241 \, A \\ \end{cases}\end{split}\]
../_images/exam-2025-01-22-ese-01-c.png
Internal generators off, current generators at the ports

Callling \(i_A\) and \(i_B\) the current passing through the current generators connected at the ports. The solution is found powering one generation at a time and then exploiting PSCE

Powering A

\[\begin{split}\begin{aligned} 0 & = (i_2 - i_A) R_8 + i_2 (R_{14678}) \\ \rightarrow \quad i_2 & = \frac{R_8}{R_{14678}} i_A \end{aligned}\end{split}\]
\[\begin{split}\begin{aligned} v_{A,A} & = -R_8 ( i_2 - i_A ) & = \dfrac{R_8 R_{1467}}{R_{14678}} i_A \\ v_{B,A} & = - R_4 i_2 & = - \dfrac{R_4 R_8}{R_{14678}} i_A \\ i_{,A}& = - i_2 & = - \dfrac{R_8}{R_{14678}} i_A \\ \end{aligned}\end{split}\]
\[\begin{split}\begin{aligned} v_{A,A} & = R_{AA} \, i_A && = \ \ \ 7.0345 \, \Omega \, i_A \\ v_{B,A} & = R_{BA} \, i_A && = - 1.2414 \, \Omega \, i_A \\ i_{,A} & = i_{/i_A}\, i_A && = - 0.4138 \ \ i_A \\ \end{aligned}\end{split}\]

Powering B.

Currents in the two parallel branches in the upper part of the circuit (current dividers) read

\[\begin{split}\begin{aligned} i_{2,B} & = \frac{R_4}{R_{14678}} i_B \\ i_{3,B} & = \frac{R_2}{R_{23}} i_B \\ \end{aligned}\end{split}\]

and the desired variables

\[\begin{split}\begin{aligned} i_{,B} & = i_{4,B} & = \dfrac{R_{1678}}{R_{14678}} i_B \\ v_{A,B} & = - R_8 i_{2,B} & = - \dfrac{R_4 R_8}{R_{14678}} i_B \\ v_{B,B} & = R_4 i_{4,B} + R_3 i_{3,B} & = \left[ \dfrac{R_4(R_{1678})}{R_{14678}} + \dfrac{R_2 R_3}{R_{23}} \right] i_B \\ \end{aligned}\end{split}\]
\[\begin{split}\begin{aligned} v_{A,B} & = R_{AB} \, i_B & = - 1.2414 \, \Omega \, i_B \\ v_{B,B} & = R_{BB} \, i_B & = \ \ \ 6.8073 \, \Omega \, i_B \\ i_{,B}& = i_{/i_B} \, i_B & = \ \ \ 0.8966 \ \ i_B \\ \end{aligned}\end{split}\]
../_images/exam-2025-01-22-ese-01-a.png

The equations of the equivalent algebraic system are

\[\begin{split}\begin{cases} v_A & = v_{A,0} + R_{AA} \, i_A + R_{AB} \, i_B \\ v_B & = v_{B,0} + R_{BA} \, i_A + R_{BB} \, i_B \\ i & = i_{ ,0} + i_{/i_A} \, i_A + i_{/i_B} \, i_B \\ \end{cases}\end{split}\]

and they can be used to write the currents as a function of the tensions

\[\begin{split}\begin{aligned} i_A & = \dfrac{1}{\det \mathbf{R}} \left( R_{BB} \, \Delta v_A(t) - R_{AB} \, \Delta v_B(t) \right) \\ i_B & = \dfrac{1}{\det \mathbf{R}} \left(-R_{BA} \, \Delta v_A(t) + R_{AA} \, \Delta v_B(t) \right) \\ \end{aligned}\end{split}\]

The switch command is off for \(t \le 0^-\), on for \(t > 0\),

\[i_B(t \le 0^{-}) = 0 \qquad , \qquad v_B (t \ge 0^+) = 0 \ .\]

Steady solution for \(t \le 0^-\). With switch open \(i_B = 0\) and steady conditions \(i_A = C \dot{v}_A = 0\),

\[\begin{split}\begin{cases} v_A(0^-) & = v_{A,0} = - 20.6900 \, V \\ v_B(0^-) & = v_{B,0} = \ \ \ 12.4750 \, V \\ i(0^-) & = i_{ ,0} = \ - 1.7241 \, A \\ \end{cases}\end{split}\]

Transient dynamics. For \(t \ge 0\), the switch is closed and thus \(v_B(t\ge 0^+) = 0\).

  • Tension across the switch as a function of time

    \[\begin{split}\begin{aligned} v_{B}(t) & = v_{B,0} \, h(-t) = v_{B,0} ( 1 - h(t) ) \\ \Delta v_B(t) & = v_{B}(t) - v_{B,0} = - v_{B,0} \, h(t) \ . \end{aligned}\end{split}\]
  • Tension across the capacitor. Writing \(i_A\) across the capacitor as a function of the tensions, the constitutive equation of the capacitor becomes

    \[\begin{split}\begin{aligned} 0 & = C \dfrac{d \Delta v_A}{d t} + i_A = \\ & = C \dfrac{d \Delta v_A}{d t} + \dfrac{1}{\det \mathbf{R}} \left( R_{BB} \, \Delta v_A - R_{AB} \, \Delta v_B \right) \\ \\ \end{aligned}\end{split}\]
    \[\begin{split}\begin{cases} R_{eq} C \dfrac{d \Delta v_A}{d t} + \Delta v_A = \dfrac{ R_{AB} }{ R_{BB} } \, \Delta v_B(t) = - \dfrac{ R_{AB} }{ R_{BB} } v_{B,0} \, h(t) \\ \\ \Delta v_A(0) = 0 \ , \end{cases}\end{split}\]

    with

    \[\begin{split}\begin{aligned} R_{eq} & = \frac{\det \mathbf{R}}{R_{BB}} = 6.8081 \, \Omega \\ \tau & = R_{eq} C = 3.4041 \cdot 10^{-3} \, s \\ \det \mathbf{R} & = 46.345 \, \Omega^2 \\ \end{aligned}\end{split}\]

    The solution of the differential equation provides the difference of the tension through the capacitor w.r.t. the initial steady condition

    \[\Delta v_A(t) = \Delta v_{A,+\infty} \left( 1 - e^{-\frac{t}{\tau}} \right) \, h(t) \ ,\]

    with \(\Delta v_{A,+\infty} = -\frac{R_{AB}}{R_{BB}} v_{B,0} = 2.2742 \, V\). The voltage across the capacitor as a function of time \(t\) thus reads

    \[\begin{split}\begin{aligned} v_A(t) & = v_{A,0} + \Delta v_A(t) = \\ & = v_{A,0} + \Delta v_{A,+\infty} \left( 1 - e^{-\frac{t}{\tau}} \right) \, h(t) \ , \end{aligned}\end{split}\]

    so that the values

    \[\begin{split}\begin{aligned} v_A(0^+) & = v_{A,0} && = -20.69 \, V \\ v_A(+\infty) & = v_{A,0} + \Delta V = -20.69 \, V + 2.2742 \, V && = -18.4158 \, V \end{aligned}\end{split}\]
  • Current through the capacitor.

    \[\begin{split}\begin{aligned} i_A(t) & = \dfrac{1}{\det \mathbf{R}} \left( R_{BB} \, \Delta v_A(t) - R_{AB} \, \Delta v_B(t) \right) = \\ & = \dfrac{1}{\det \mathbf{R}} \left[ R_{BB} \, \left( -\frac{R_{AB}}{R_{BB}} v_{B,0} \right) \left( 1 - e^{-\frac{t}{\tau}} \right) \, h(t) + R_{AB} \, v_{B,0} \, h(t) \right] = \\ & = \frac{R_{AB}}{\det \mathbf{R}} v_{B,0} e^{-\frac{t}{\tau}} \, h(t) \ . \end{aligned}\end{split}\]

    so that the values

    \[\begin{split}\begin{aligned} i_A(0^+) & = \frac{R_{AB}}{\det \mathbf{R}} v_{B,0} = \frac{-1.2414 \, \Omega}{46.908 \, \Omega^2} \, 12.475 \, V = -0.334 \, A \\ i_A(+\infty) & = v_{A,0} + \Delta V = -20.69 \, V + 2.2742 \, V && = 0.0 \, A \end{aligned}\end{split}\]

    or with \(i_A = - C \frac{d \Delta v_A}{dt}\)

  • Current across the switch

    \[\begin{split}\begin{aligned} i_B(t) & = \frac{1}{R_{BB}} \bigg[ v_B(t) - v_{B,0} - R_{BA} i_A(t) \bigg] = \\ & = \frac{1}{R_{BB}} \bigg[ - v_{B,0} - R_{BA} \frac{R_{AB}}{\det \mathbf{R}} v_{B,0} e^{-\frac{t}{\tau}} \bigg] \, h(t) = \\ & = - \frac{v_{B,0}}{R_{BB}} \bigg[ 1 + \frac{R_{BA} R_{AB}}{\det \mathbf{R}} \, e^{-\frac{t}{\tau}} \bigg] \, h(t) \ . \end{aligned}\end{split}\]

    so that the values

    \[\begin{split}\begin{aligned} i_B(0^+) & = -\frac{v_{B,0}}{R_{BB}} \left[ 1 + \frac{R_{BA} R_{AB}}{\det \mathbf{R}} \right] = -\frac{v_{B,0} R_{AA}}{\det \mathbf{R}} = - \frac{7.0345 \, \Omega}{46.345 \, \Omega^2} \, 12.475 \, V = - 1.8929 \, A \\ i_B(+\infty) & = -\frac{v_{B,0}}{R_{BB}} = - \dfrac{12.475 \, V}{6.8073 \, \Omega} = -1.8320 \, A \ . \end{aligned}\end{split}\]
  • Current \(i(t)\)

    \[\begin{split}\begin{aligned} i(t) & = i_{0} - 0.4138 \, i_A(t) + 0.8966 \, i_B(t) = \\ & = i_{0} + \left[ - 0.4138 \, i_{A,0^+} e^{-\frac{t}{\tau}} + 0.8966 \, \left( i_{B,+\infty} + (i_{B,0^+} - i_{B,+\infty}) e^{-\frac{t}{\tau}} \right) \right] \, h(t) \ , \end{aligned}\end{split}\]

    so that

    \[\begin{split}\begin{aligned} i(0^+) & = i_{0} - 0.4138 \, i_{A,0^+} + 0.8966 \, i_{B,0^+} = \\ & = -1.7214 \, A - 0.4138 \, (-0.334 \, A) + 0.8966 \, (-1.8929 \, A) = -3.2831 \, A \\ i(+\infty) & = i_{0} + 0.8966 \, i_{B,+\infty} = \\ & = -1.7214 \, A + 0.8966 \, (-1.8320 \, A) = - 3.3671 \, A \end{aligned}\end{split}\]

Energy stored in the capacitor.

\[E_C(t) = \frac{1}{2} C v_A^2(t) \ ,\]

and for \(t = \tau\),

\[\begin{split}\begin{aligned} v_A(t) & = v_{A,0} + \Delta v_{A,+\infty} \left( 1 - e^{-\frac{t}{\tau}} \right) \, h(t) = \\ & = -20.69 \, V + 2.2742 \, V \left( 1 - e^{-\frac{t}{\tau}} \right) \, h(t) \ , \end{aligned}\end{split}\]

and thus \(v_A(\tau) = -19.25 \, V\)

\[E_C(\tau) = 0.5 \cdot 5 \cdot 10^{-4} \, F \cdot ( 19.25 \, V )^2 = 9.26 \cdot 10^{-2} \, J \ .\]

Exercise 11.3 (Exam 2024-09-06, Exercise 1.)

../_images/exam-2024-09-06-ese-01.png
Solution

Equivalent 2-port circuit of the resistive network. Following the guidelines for the solution, a many-port Thevenin equivalent circuit of the resistive part of the circuit is found, with two ports for interfacing with the capacitor (A) and with the switch. The dynamical equation of the system is written in state-space representation, writing the voltage at the ports and the unknown variable \(i(t)\) as outputs; the capacitor contitutive equation is used to find the time evolution of the system once the switch is closed

  • open circuit

    \[\begin{split}\begin{aligned} v_{A,0} & = - e - R_2 \, a = - 5 \, V - 2 \, \Omega \cdot 5 \, A = - 15 \, V \\ v_{B,0} & = - e = - 5 \, V \\ i_{0} & = 0 \, A \\ \end{aligned}\end{split}\]
  • current generators at ports, internal generators off

    \[\begin{split}\begin{aligned} v_A & = R_4 (i_A+i_B) + R_2 i_A \\ v_B & = v_A + R_1 i_B - R_2 i_A = R_4 (i_A + i_B) + R_1 i_B \\ i & = i_A + i_B \\ \end{aligned}\end{split}\]

and thus

\[\begin{split}\begin{aligned} v_A & = v_{A,0} + R_{AA} i_A + R_{AB} i_B && = v_{A,0} + \left( R_2+R_4 \right) i_A + R_4 \, i_B \\ v_B & = v_{B,0} + R_{BA} i_A + R_{BB} i_B && = v_{B,0} + R_4 \, i_A + \left( R_1+R_4 \right) i_B \\ i & = i_{ ,0} + i_{/A} i_A + i_{/B} i_B && = 0 \, A + i_A + i_B \\ \end{aligned}\end{split}\]

Initial conditions. Steady conditions with open switch follows from conditions \(i_B = 0\), and \(v_A = L \frac{d i_A}{d t} = 0\), solving the equations for

\[\begin{split}\begin{aligned} i_A(0^-) & = - \frac{v_{A,0}}{R_{AA}} && = - \dfrac{-15 \, V}{6 \, \Omega} && = 2.5 \, A \\ v_B(0^-) & = - v_{B,0} + R_{BA} \, i_A = - v_{B,0} - \dfrac{R_{BA}}{R_{AA}} v_{A,0} && = 5 \, V + \dfrac{4 \, \Omega}{6 \, \Omega} 15 \, V && = 15 \, V \\ i (0^-) & = i_{ ,0} + i_{/A} i_A = i_{ ,0} - \dfrac{i_{/A}}{R_{AA}} v_{A,0} && = 0 \, A - \dfrac{-15 \, V}{6 \, \Omega} && = 2.5 \, A \\ \end{aligned}\end{split}\]

Transient.

  • switch closes at time \(t = 0\). Voltage across the switch as a function of time can be represented by the function

    \[\begin{split}\begin{aligned} v_{B}(t) & = v_B(0^-) \left( 1 - h(t) \right) \\ & = \left[ v_{B,0} - \dfrac{R_{BA}}{R_{AA}} v_{A,0} \right] \left( 1 - h(t) \right) \\ \Delta v_{B}(t) = v_{B}(t) - v_{B,0} & = - v_{B,0} h(t) - \dfrac{R_{BA}}{R_{AA}} v_{A,0} \left( 1 - h(t) \right) \\ \end{aligned}\end{split}\]
  • dynamical equation of the inductor is written as a first order differential equation in the state variable of the inductor, \(i_A(t)\), after writing \(v_A\) as a function of \(i_A\) and the potentials at the ports,

    \[\begin{split}\begin{aligned} v_A & = v_{A,0} + R_{AA} i_A + R_{AB} i_B = \\ & = v_{A,0} + R_{AA} i_A + \dfrac{R_{AB}}{R_{BB}} \left( v_B(t) - v_{B,0} - R_{BA} i_A \right) = \\ & = \dfrac{\det \mathbf{R}}{R_{BB}} i_A + v_{A,0} + \dfrac{R_{AB}}{R_{BB}} \left( v_B(t) - v_{B,0} \right) = \\ & = \dfrac{\det \mathbf{R}}{R_{BB}} i_A + v_{A,0} - \dfrac{R_{AB}}{R_{BB}} v_{B,0} \, h(t) - \dfrac{R_{AB}}{R_{BB}}\dfrac{R_{BA}}{R_{AA}} v_{A,0} (1- h(t)) = \\ & = \dfrac{\det \mathbf{R}}{R_{BB}} i_A + \dfrac{\det \mathbf{R}}{R_{AA} R_{BB}} v_{A,0} - \dfrac{R_{AB}}{R_{BB}}\left( v_{B,0} - \dfrac{R_{BA}}{R_{AA}} v_{A,0} \right) \, h(t) \end{aligned}\end{split}\]
    \[\begin{split}\begin{aligned} 0 = & L \dfrac{d i_A}{dt} + v_A \\ & L \dfrac{d i_A}{dt} + \dfrac{\det \mathbf{R}}{R_{BB}} i_A = - \dfrac{\det \mathbf{R}}{R_{AA} R_{BB}} v_{A,0} + \dfrac{R_{AB}}{R_{BB}} \left( v_{B,0} - \dfrac{R_{BA}}{R_{AA}} v_{A,0} \right) \, h(t) \end{aligned}\end{split}\]

    with initial conditions \(i_A(0) = i_A(0^-)\).

    Numerical values

    \[\begin{split}\begin{aligned} \tau & = \dfrac{L}{R_{eq}} = \dfrac{0.1 \, H}{2.8 \, \Omega} = 3.57 \cdot 10^{-2} \, s \\ R_{eq} & = \dfrac{\det \mathbf{R}}{R_{BB}} = \dfrac{14 \, \Omega^2}{5 \, \Omega} = 2.8 \, \Omega \\ \det \mathbf{R} & = R_{AA} R_{BB} - R_{AB} R_{BA} = \\ & = (R_1 + R_4)(R_2 + R_4) - R_4^2 = ( 30 - 16 ) \Omega^2 = 14 \, \Omega^2 \end{aligned}\end{split}\]
  • Current through the inductor.

    \[i_A(t) = \dots \]
    \[\begin{split}\begin{aligned} i_A(0) & = i_A(0^-) = 2.5 \, A \\ i_A(+\infty) & = \dfrac{1}{R_{eq}} \left[ - v_{A,0} + \dfrac{R_{AB}}{R_{BB}} v_{B,0} \right] = \dfrac{1}{2.8 \, \Omega} \left[ 15 \, V + \dfrac{4}{5} \, ( - 5 \, V ) \right] = 3.93 \, A \end{aligned}\end{split}\]
  • Current through the switch.

    \[i_B(t) = \dfrac{1}{R_{BB}} \left( v_B(t) - v_{B,0} - R_{BA} i_A(t) \right)\]
    \[\begin{split}\begin{aligned} i_B(0^+) & = \dfrac{1}{R_{BB}} \left( v_B(0^+ ) - v_{B,0} - R_{BA} i_A(0^+ ) \right) = \\ & = \dfrac{1}{5 \, \Omega} \left( 0 \, V + 5 \, V - 4 \, \Omega \cdot (2.5 \, A) \right) = -1.00 \, A \\ i_B(+\infty) & = \dfrac{1}{R_{BB}} \left( v_B(+\infty) - v_{B,0} - R_{BA} i_A(+\infty) \right) = \\ & = \dfrac{1}{5 \, \Omega} \left( 0 \, V + 5 \, V - 4 \, \Omega \cdot (3.93 \, A) \right) = -2.14 \, A\\ \end{aligned}\end{split}\]
  • Current \(i_{R_4}\).

    \[i_{R_4}(t) = i_A(t) + i_B(t)\]
    \[\begin{split}\begin{aligned} i_{R_4}(0^+ ) & = i_A(0^+ ) + i_B(0^+ ) = 2.50 \, A - 1.00 \, A = 1.50 \, A \\ i_{R_4}(+\infty) & = i_A(+\infty) + i_B(+\infty) = 3.93 \, A - 2.14 \, A = 1.79 \, A \\ \end{aligned}\end{split}\]

Exercise 11.4 (Exam 2024-07-22, Exercise 1.)

../_images/exam-2024-07-22-ese-01.png
Solution - todo

Exercise 11.5 (Exam 2024-02-13, Exercise 1.)

../_images/exam-2024-02-13-ese-01-b.png
Solution - todo