12. Green’s function method
12.1. Poisson equation
General Poisson’s problem
\[\begin{split}\begin{cases}
- \nabla^2 \mathbf{u}(\mathbf{r}, t) = \mathbf{f}(\mathbf{r},t) \\
\text{+ b.c.}
\end{cases}\end{split}\]
with common boundary conditions
\[\begin{split}\begin{cases}
\mathbf{u} = \mathbf{g} & \quad \text{on $S_D$} \\
\hat{\mathbf{n}} \cdot \nabla \mathbf{u} = \mathbf{h} & \quad \text{on $S_N$}
\end{cases}\end{split}\]
over Dirichlet and Neumann regions of the boundary.
Poisson’s problem for Green’s function, in infinite domain
\[\begin{split}
- \nabla_{\mathbf{r}}^2 G(\mathbf{r}; \mathbf{r}_0) = \delta(\mathbf{r} - \mathbf{r}_0) \\
\end{split}\]
Green’s function method
\[\begin{split}\begin{aligned}
E(\mathbf{r}_0, t) u_i(\mathbf{r}_0, t)
& = \int_{\mathbf{r} \in \Omega} u_i(\mathbf{r},t) \delta(\mathbf{r}-\mathbf{r}_0) = \\
& = - \int_{\mathbf{r} \in \Omega} u_i(\mathbf{r},t) \nabla_{\mathbf{r}}^2 G(\mathbf{r}-\mathbf{r}_0) = \\
& = - \int_{\mathbf{r} \in \Omega} \nabla_{\mathbf{r}} \cdot ( u_i \nabla_{\mathbf{r}} G - G \nabla_{\mathbf{r}} u_i) - \int_{\mathbf{r} \in \Omega} G \nabla^2 u_i= \\
& = - \oint_{\mathbf{r} \in \partial \Omega} \hat{\mathbf{n}} \cdot ( u_i \nabla_{\mathbf{r}} G - G \nabla_{\mathbf{r}} u_i) + \int_{\mathbf{r} \in \Omega} G(\mathbf{r}-\mathbf{r}_0) f_i(\mathbf{r}, t) . \\
\end{aligned}\end{split}\]
An integro-differential boundary problem can be written using boundary conditions. As an example, using Dirichlet and Neumann boundary conditions, the integro-differential problem reads
\[\begin{split}\begin{aligned}
& E(\mathbf{r}_0, t) \mathbf{u}(\mathbf{r}_0, t)
+ \int_{\mathbf{r} \in S_N} \mathbf{u}(\mathbf{r},t) \, \hat{\mathbf{n}} \cdot \nabla_{\mathbf{r}} G(\mathbf{r}-\mathbf{r}_0)
- \int_{\mathbf{r} \in S_D} G(\mathbf{r}-\mathbf{r}_0) \, \hat{\mathbf{n}} \cdot \nabla_{\mathbf{r}} \mathbf{u}(\mathbf{r},t) = \\
& =
- \int_{\mathbf{r} \in S_D} \mathbf{g}(\mathbf{r},t) \, \hat{\mathbf{n}} \cdot \nabla_{\mathbf{r}} G(\mathbf{r}-\mathbf{r}_0)
+ \int_{\mathbf{r} \in S_N} G(\mathbf{r}-\mathbf{r}_0) \, \mathbf{h}(\mathbf{r},t)
+ \int_{\mathbf{r} \in \Omega} G(\mathbf{r}-\mathbf{r}_0) \, \mathbf{f}(\mathbf{r}, t) . \\
\end{aligned}\end{split}\]
Green’s function of the Poisson-Laplace equation reads
\[G(\mathbf{r};\mathbf{r}_0) = \frac{1}{4 \pi} \frac{1}{\left| \mathbf{r}-\mathbf{r}_0 \right|} \ .\]
\[-\nabla^2 G = 0 \qquad \text{for $\mathbf{r} \ne \mathbf{r}_0$}\]
Solutions with spherical symmetry,
\[0 = \nabla^2 G = \frac{1}{r^2} \left( r^2 G' \right)'
\quad \rightarrow \quad
G'(r) = \frac{A}{r^2} \quad \rightarrow \quad G(r) = - \frac{A}{r} + B
\]
Choosing \(B = 0\) s.t. \(G(r) \rightarrow 0\) as \(r \rightarrow \infty\), and integrating over a sphere centered in \(r=0\) to get \(A = -\frac{1}{4 \pi}\),
\[1 = \int_{V} \delta(r) = - \int_{V} \nabla^2 G = - \oint_{\partial V} \hat{\mathbf{n}} \cdot \nabla G
= -\oint_{\partial V} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} \frac{A}{r^2} = - 4 \pi \, A \]
12.2. Helmholtz equation
todo from Fourier to Laplace trasnform in the first lines of this section
A Helmholtz’s equation can be thouoght as the time Fourier transform of a wave equation,
\[\begin{split}\begin{cases}
\dfrac{1}{c^2} \partial_{tt} \mathbf{u}(\mathbf{r},t) - \nabla^2 \mathbf{u}(\mathbf{r},t) = \mathbf{f}(\mathbf{r},t) \\
\text{+ b.c.} \\
\text{+ i.c.} \ ,
\end{cases}\end{split}\]
Fourier transform in time of field \(\mathbf{u}(\mathbf{r},t)\) reads
\[\tilde{\mathbf{u}}(\mathbf{r}, \omega) = \mathscr{F}\{ \mathbf{u}(\mathbf{r},t) \} = \int_{t=-\infty}^{+\infty} \mathbf{u}(\mathbf{r},t) e^{-i \omega t} \, d \omega\]
and, if \(\mathbf{u}(\mathbf{r},t)\) is compact in time, Fourier transform of its time partial derivatives read
\[\begin{split}\begin{aligned}
\mathscr{F}\{ \dot{\mathbf{u}}(\mathbf{r},t) \}
& = \int_{t=-\infty}^{+\infty} \dot{\mathbf{u}}(\mathbf{r},t) e^{-i \omega t} \, d \omega = \\
& = \mathbf{u}(\mathbf{r},t) e^{-i \omega t} \big|_{t=-\infty}^{+\infty} + i \omega \int_{t=-\infty}^{+\infty} \mathbf{u}(\mathbf{r},t) e^{-i \omega t} \, d \omega = \\
& = i \omega \mathscr{F}\{ \mathbf{u}(\mathbf{r},t) \}
\end{aligned}\end{split}\]
\[\mathscr{F}\{ \partial_t^n \mathbf{u}(\mathbf{r},t) \} = (i \omega)^n \tilde{\mathbf{u}} \ .\]
The differential problem in the transformed domain thus reads
\[- \frac{\omega^2}{c^2} \tilde{\mathbf{u}} - \nabla^2 \tilde{\mathbf{u}} = \tilde{\mathbf{f}}\]
Green’s function of Helmholtz’e equation reads
\[G(\mathbf{r}, s) =
\alpha^+ \frac{e^{ \frac{s|\mathbf{r} - \mathbf{r}_0|}{c}}}{|\mathbf{r} - \mathbf{r}_0|} +
\alpha^- \frac{e^{-\frac{s|\mathbf{r} - \mathbf{r}_0|}{c}}}{|\mathbf{r} - \mathbf{r}_0|}
\]
with \(\alpha^+ + \alpha^- = \frac{1}{4 \pi}\).
Being the Laplace transform,
\[\mathscr{L}\{ f(t) \} = \int_{t=0^-}^{+\infty} f(t) e^{-st} dt \ ,\]
the Laplace transform of a causal function with time delay \(\tau \ge 0\) reads
\[\mathscr{L}\{ f(t-\tau) \} = \int_{t=0^-}^{+\infty} f(t-\tau) e^{-st} dt = \int_{z = - \tau}^{+\infty} f(z) e^{-s(z+\tau)} \, dz = e^{-s\tau} \, \int_{z = 0}^{+\infty} f(z) e^{-s z} \, dz = e^{-s \tau} \, \mathscr{L}\{ f(t) \}\]
having used causality \(f(t) = 0\) for \(t < 0\). Laplace transform of Dirac’s delta \(\delta(t)\) reads
\[\mathscr{L}\{ \delta(t) \} = \int_{t=0^-}^{+\infty} \delta(t) \, dt = 1 \ ,\]
so that \(e^{-s \tau} = e^{- s \tau} \, 1 = \mathscr{L}\{ \delta(t-\tau) \}\).
Thus, Green’s function for the wave equation reads
\[G(\mathbf{r},t; \mathbf{r}_0, t_0) =
\alpha^+ \frac{ \delta \left( t - t_0 + \frac{|\mathbf{r}-\mathbf{r}_0|}{c} \right)}{|\mathbf{r} - \mathbf{r}_0|} +
\alpha^- \frac{ \delta \left( t - t_0 - \frac{|\mathbf{r}-\mathbf{r}_0|}{c} \right)}{|\mathbf{r} - \mathbf{r}_0|}
\]
If \(t \ge t_0\), and \(G(\mathbf{r}, t; \mathbf{r}_0, t_0)\) connects the past \(t_0\) with the future \(t\), the first term is not causal, and thus \(\alpha^+ = 0\) and
\[G(\mathbf{r},t; \mathbf{r}_0, t_0) = \frac{1}{4 \pi} \frac{ \delta \left( t - t_0 - \frac{|\mathbf{r}-\mathbf{r}_0|}{c} \right)}{|\mathbf{r} - \mathbf{r}_0|} \ .\]
\[\frac{s^2}{c^2} G - \nabla^2 G = \delta(r)\]
\[G(r) = \frac{\alpha e^{k r} + \beta e^{-kr}}{r}\]
Proof:
Gradient
\[\nabla G(r) = \hat{\mathbf{r}} \partial_r G = \hat{\mathbf{r}} \frac{\alpha (k r - 1) e^{kr} + \beta(-k r - 1)e^{-kr}}{r^2}\]
Laplacian
\[\begin{split}\begin{aligned}
\nabla^2 G(r) & = \frac{1}{r^2} \left( r^2 G'(r) \right)' = \\
& = \frac{1}{r^2} \left( \alpha (k r - 1) e^{kr} + \beta(-k r - 1)e^{-kr}\right)' = \\
& = \frac{1}{r^2} \left( \alpha k e^{kr} + \alpha k^2 r e^{kr} - \alpha k e^{kr} - \beta k e^{-kr} + \beta k^2 r e^{-kr} + \beta k e^{-kr} \right) = \\
& = \frac{1}{r} \left( \alpha e^{kr} + \beta e^{-kr} \right) k^2 = k^2 G(r) \ .
\end{aligned}\end{split}\]
and thus \(k^2 G(r) - \nabla^2 G = 0\), for \(r \ne 0\);
Unity
\[1 = \int_{V} \delta(r) = \int_V \left( k^2 G - \nabla^2 G \right) = \int_V k^2 G - \oint_{\partial V} \hat{\mathbf{n}} \cdot \nabla G \]
the second term is the sum of two contributions of the form
\[\oint_{\partial V} \hat{\mathbf{n}} \cdot \nabla G^{\pm} = \oint_{\partial V} \frac{\alpha^{\pm}(\pm k r - 1) e^{\pm k r}}{r^2} = 4 \pi \alpha^{\pm} (\pm k r - 1) e^{\pm k r}\]
the first term is the sum of two contributions of the form
\[\begin{split}\begin{aligned}
k^2 \int_{V} G(r)
& = k^2 \int_{V} \frac{\alpha^{\pm} e^{\pm k r}}{r} = \\
& = k^2 \alpha^{\pm} \int_{R = 0}^{r} \int_{\phi=0}^{\pi} \int_{\theta=0}^{2 \pi} \frac{e^{\pm k R}}{R} R^2 \sin \phi \, dR \, d \phi \, d \theta = \\
& = k^2 \alpha^{\pm} \, 4 \pi \int_{R = 0}^{r} R \, e^{\pm k R} \, dR \ .
\end{aligned}\end{split}\]
the last integral can be evaluated with integration by parts
\[\begin{split}\begin{aligned}
\int_{R = 0}^{r} R \, e^{\pm k R} \, dR
& = \left.\left[ \frac{1}{\pm k} e^{\pm k R } R \right]\right|_{R=0}^{r} \mp \frac{1}{k} \int_{R=0}^{r} e^{\pm k R} \, dR = \\
& = \frac{1}{\pm k} e^{\pm k r } r - \frac{1}{k^2} e^{\pm k R} + \frac{1}{k^2} = \\
\end{aligned}\end{split}\]
Thus summing everything together,
\[\begin{split}\begin{aligned}
1 & = \alpha^+ \left[ 4 \pi k^2 \left( \frac{r}{k} e^{k r} - \frac{1}{k^2} e^{kr} + \frac{1}{k^2} \right) - 4 \pi \left( k r - 1 \right) e^{kr} \right] + \alpha^- \left[ \dots \right] = \\
& = 4 \pi \left( \alpha^+ + \alpha^- \right) \ .
\end{aligned}\end{split}\]
12.3. Wave equation
Wave equation general problem
\[\begin{split}\begin{cases}
\dfrac{1}{c^2} \partial_{tt} \mathbf{u}(\mathbf{r},t) - \nabla^2 \mathbf{u}(\mathbf{r},t) = \mathbf{f}(\mathbf{r},t) \\
\text{+ b.c.} \\
\text{+ i.c.} \\
\end{cases}\end{split}\]
Green’s problem of the wave equation
\[\frac{1}{c^2} \partial_{tt} G(\mathbf{r},t;\mathbf{r}_0,t_0) - \nabla_{\mathbf{r}}^2 G(\mathbf{r},t;\mathbf{r}_0,t_0) = \delta(\mathbf{r}-\mathbf{r}_0) \delta(t-t_0)\]
Integration by parts
\[\begin{split}\begin{aligned}
E(\mathbf{r}_{\alpha}, t_{\alpha}) \mathbf{u}(\mathbf{r}_{\alpha},t_{\alpha}) & = \int_{t \in T} \int_{\mathbf{r} \in V} \delta(t-t_{\alpha}) \delta(\mathbf{r}-\mathbf{r}_{\alpha}) \mathbf{u}(\mathbf{r},t) = \\
& = \int_{t \in T} \int_{\mathbf{r} \in V} \left\{ \frac{1}{c^2} \partial_{tt} G - \nabla^2_{\mathbf{r}} G \right\} \mathbf{u} = \\
& = \int_{t \in T} \int_{\mathbf{r} \in V} \left\{ \frac{1}{c^2} \left[ \partial_t \left( \mathbf{u} \partial_t G - G \partial_t \mathbf{u} \right) + G \partial_{tt} \mathbf{u} \right] - \nabla_{\mathbf{r}} \cdot \left( \nabla_{\mathbf{r}} G \, \mathbf{u} - G \nabla_{\mathbf{r}} \mathbf{u} \right) - G \, \nabla^2_{\mathbf{r}} \mathbf{u} \right\} = \\
& = \int_{\mathbf{r} \in V} \frac{1}{c^2} \left[ \mathbf{u}(\mathbf{r},t) \partial_t G(\mathbf{r},t; \mathbf{r}_{\alpha},t_{\alpha}) - G(\mathbf{r},t; \mathbf{r}_{\alpha},t_{\alpha}) \partial_t \mathbf{u}(\mathbf{r},t) \right] \bigg|_{t_0}^{t_1} + \\
& \quad + \int_{t \in T} \oint_{\mathbf{r} \in \partial V} \left\{ - \hat{\mathbf{n}}(\mathbf{r},t) \cdot \nabla_{\mathbf{r}} G(\mathbf{r},t; \mathbf{r}_{\alpha},t_{\alpha}) \, \mathbf{u}(\mathbf{r},t) + G(\mathbf{r},t; \mathbf{r}_{\alpha},t_{\alpha}) \, \hat{\mathbf{n}}(\mathbf{r},t) \cdot \nabla_{\mathbf{r}} \mathbf{u}(\mathbf{r},t) \right\} + \\
& \quad + \int_{t \in T} \int_{\mathbf{r} \in V} G(\mathbf{r},t; \mathbf{r}_{\alpha},t_{\alpha}) \underbrace{ \left\{ \frac{1}{c^2} \partial_{tt} \mathbf{u}(\mathbf{r},t) - \nabla^2_{\mathbf{r}} \mathbf{u}(\mathbf{r},t) \right\}}_{= \mathbf{f}(\mathbf{r},t)} \\
\end{aligned}\end{split}\]
\[\begin{aligned}
\int_{t \in T} \int_{\mathbf{r} \in V} \frac{1}{4 \pi}\frac{\delta\left( t-t_{\alpha} + \frac{|\mathbf{r} - \mathbf{r}_{\alpha}|}{c} \right)}{|\mathbf{r} - \mathbf{r}_{\alpha}|} \, \mathbf{f}(\mathbf{r},t)
& = \int_{\mathbf{r} \in V \cap B_{|\mathbf{r} - \mathbf{r}_{\alpha}| \le c (t_\alpha - t)}} \frac{1}{4 \pi |\mathbf{r} - \mathbf{r}_{\alpha}|} \mathbf{f}\left(\mathbf{r}, t_{\alpha} - \frac{|\mathbf{r}-\mathbf{r}_{\alpha}|}{c}\right)
\end{aligned}\]