2.2.7. Magnetization#

2.2.7.1. Single Magnetic Moment (Limit of an Elementary Loop)#

Using the Biot-Savart law, specialized for a conductor carrying current \(i(\vec{r}_0)\)

\[\begin{split}\begin{aligned} d \vec{b}(\vec{r}) & = - \frac{\mu}{4 \pi} \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3} \times \vec{j}(\vec{r}_0) d V_0 = \\ & = - \frac{\mu}{4 \pi} i(\vec{r}_0) \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3} \times \hat{\vec{t}}(\vec{r}_0) d \ell_0 \ , \end{aligned}\end{split}\]

we can calculate the magnetic field generated by a loop with path \(\ell_0 = \partial S_0\) using the PSCE

\[\begin{split}\begin{aligned} \vec{b}(\vec{r}) & = \oint_{\ell_0} d \vec{b}(\vec{r}_0) = \\ & = - \frac{\mu}{4 \pi} i_0 \oint_{\vec{r}_0 \in \ell_0} \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3} \times \hat{\vec{t}}(\vec{r}_0) = \\ & = \frac{\mu}{4 \pi} i_0 \int_{\vec{r}_0 \in S_0} \hat{\vec{n}}(\vec{r}_0) \cdot \nabla_{\vec{r}_0} \left( \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3} \right) \end{aligned}\end{split}\]

The field generated by an elementary loop of surface \(S_0\) with normal \(\hat{\vec{n}}_0\), using the mean value theorem, is

\[\vec{b}(\vec{r}) = \frac{\mu}{4 \pi} i_0 S_0 \hat{\vec{n}}_0 \cdot \nabla_{\vec{r}_0} \left( \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3} \right) + o(S_0)\]

and as \(i_0 \rightarrow \infty\), \(S_0 \rightarrow 0\) such that \(\vec{M}_0 := i_0 S_0 \hat{\vec{n}}_0\)

\[\begin{split}\begin{aligned} \vec{b}(\vec{r}) & = \frac{\mu}{4 \pi} \vec{M}_0 \cdot \nabla_{\vec{r}_0} \left( \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3} \right) \\ & = - \frac{\mu_0}{4\pi} \left[ \frac{(\vec{r}-\vec{r}_0)(\vec{r}-\vec{r}_0)}{|\vec{r}-\vec{r}_0|^5} \cdot \vec{M}_0 - \frac{\vec{M}_0}{|\vec{r}-\vec{r}_0|^3} \right] = \\ & = - \frac{\mu_0}{4\pi} \left[ \frac{(\vec{r}-\vec{r}_0) \otimes (\vec{r}-\vec{r}_0)}{|\vec{r}-\vec{r}_0|^5} - \frac{\mathbb{I}}{|\vec{r}-\vec{r}_0|^3} \right] \cdot \vec{M}_0 \ . \end{aligned}\end{split}\]

todo Analogy with the electric field produced by a distribution of dipoles.

Details
\[\oint_{\partial S} A \, t_i = \int_S \varepsilon_{ijk} \, n_j \, \partial_k A \qquad , \qquad \oint_{\partial S} A \, \hat{\vec{t}} = \int_S \hat{\vec{n}} \times \nabla A\]
\[\begin{split}\begin{aligned} \oint_{\vec{r}_0 \in \ell_0} \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3} \times \hat{\vec{t}}(\vec{r}_0) d \ell_0 & = \oint_{\vec{r}_0 \in \ell_0} \varepsilon_{ijk} \frac{r_j - r_{0,j}}{|\vec{r} - \vec{r}_0|^3} t_k = \\ & = \int_{\vec{r}_0 \in S_0} \varepsilon_{krs} n_r \partial^0_s \left( \varepsilon_{ijk} \frac{r_j - r_{0,j}}{|\vec{r} - \vec{r}_0|^3} \right) = \\ & = \int_{\vec{r}_0 \in S_0} \left( \delta_{ir} \delta_{js} - \delta_{is} \delta_{jr} \right) n_r \partial^0_s \left( \frac{r_j - r_{0,j}}{|\vec{r} - \vec{r}_0|^3} \right) = \\ & = \int_{\vec{r}_0 \in S_0} \left\{ n_i \underbrace{\partial^0_j \left( \frac{r_j - r_{0,j}}{|\vec{r} - \vec{r}_0|^3} \right)}_{=0} - n_j \partial^0_i \left( \frac{r_j - r_{0,j}}{|\vec{r} - \vec{r}_0|^3} \right) \right\} = \\ & = - \int_{\vec{r}_0 \in S_0} n_j \partial^0_i \left( \frac{r_j - r_{0,j}}{|\vec{r} - \vec{r}_0|^3} \right) \ . \end{aligned}\end{split}\]

2.2.7.2. Continuous Distribution of Magnetic Moment#

To calculate the magnetic field generated by a volume distribution of magnetic moment, we can proceed in analogy with what was done to calculate the electric field generated by a distribution of dipoles

\[\begin{split}\begin{aligned} \vec{b}(\vec{r}) & = \int_{\vec{r}_0 \in V_0} \frac{\mu_0}{4 \pi } \vec{m}(\vec{r}_0) \cdot \nabla_{\vec{r}_0} \left( \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3} \right) = \\ & = \oint_{\vec{r}_0 \in \partial V_0} \frac{\mu_0}{4 \pi} \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3} \hat{\vec{n}}(\vec{r}_0) \cdot \vec{m}(\vec{r}_0) + \int_{\vec{r}_0 \in V_0} \frac{\mu_0}{4 \pi} \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3} \,\left( - \nabla_{\vec{r}_0} \cdot \vec{m}(\vec{r}_0) \right) \ , \\ \end{aligned}\end{split}\]

but without obtaining an analogy with the expression of the Biot-Savart law, which involves the cross product between the term \(\frac{\vec{r}- \vec{r}_0}{|\vec{r} - \vec{r}_0|^3}\) and a current density \(\vec{j}(\vec{r}_0)\).

Details

We can rewrite

\[\begin{split}\begin{aligned} \oint_{\vec{r}_0 \in \partial V_0} & \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3} \times \left( \hat{\vec{n}}(\vec{r}_0) \times \vec{m}(\vec{r}_0) \right) \\ & = \oint_{\vec{r}_0 \in \partial V_0} \varepsilon_{ijk} \frac{r_j - r_{0,j}}{|\vec{r}-\vec{r}_0|^3} \varepsilon_{krs} n_r m_s = \\ & = \int_{\vec{r}_0 \in V_0} \left( \delta_{ir} \delta_{js} - \delta_{is} \delta_{jr} \right) \partial^0_r \left( \frac{r_j - r_{0,j}}{|\vec{r}-\vec{r}_0|^3} m_s \right) = \\ & = \int_{\vec{r}_0 \in V_0} \left\{ \partial^0_i \left( \frac{r_j - r_{0,j}}{|\vec{r}-\vec{r}_0|^3} m_j \right) - \partial^0_j \left( \frac{r_j - r_{0,j}}{|\vec{r}-\vec{r}_0|^3} m_i \right) \right\} = \\ & = \int_{\vec{r}_0 \in V_0} \left\{ \partial^0_i \frac{r_j - r_{0,j}}{|\vec{r}-\vec{r}_0|^3} m_j + \frac{r_j - r_{0,j}}{|\vec{r}-\vec{r}_0|^3} \partial^0_i m_j - \frac{r_j - r_{0,j}}{|\vec{r}-\vec{r}_0|^3} \partial^0_j m_i - \underbrace{ \partial^0_j \frac{r_j - r_{0,j}}{|\vec{r}-\vec{r}_0|^3}}_{=0} m_i \right\} = \\ & = \int_{\vec{r}_0 \in V_0} \left\{ \partial^0_i \frac{r_j - r_{0,j}}{|\vec{r}-\vec{r}_0|^3} m_j + \varepsilon_{ijk} \varepsilon_{krs} \frac{r_j - r_{0,j}}{|\vec{r}-\vec{r}_0|^3} \partial^0_r m_s \right\} = \\ & = \int_{\vec{r}_0 \in V_0} \left\{ \nabla_{\vec{r}_0} \frac{\vec{r} - \vec{r}_0}{|\vec{r}-\vec{r}_0|^3} \cdot \vec{m}(\vec{r}_0) + \frac{\vec{r} - \vec{r}_0}{|\vec{r}-\vec{r}_0|^3} \times \left( \nabla_{\vec{r}_0} \times \vec{m}(\vec{r}_0) \right) \right\} = \\ \end{aligned}\end{split}\]

using vector calculus identities,

\[\begin{split}\begin{aligned} \vec{a} \times (\vec{b} \times \vec{c}) & = \varepsilon_{ijk} a_j \varepsilon_{krs} b_r c_s = \\ & = (\delta_{ir} \delta_{js} - \delta_{is} \delta_{jr}) a_j b_r c_s = \\ & = a_j b_i c_j - c_i b_j a_j = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c} (\vec{a} \cdot \vec{b}) \end{aligned}\end{split}\]
\[\begin{split}\begin{aligned} a_j \partial_i m_j - a_j \partial_j m_i & = (\delta_{ir} \delta_{js} - \delta_{is} \delta_{jr}) a_j \partial_r m_s = \\ & = \varepsilon_{ijk} \varepsilon_{krs} a_j \partial_r m_s = \\ & = \vec{a} \times \left( \nabla \times \vec{m} \right) \end{aligned}\end{split}\]

The magnetic field generated by a distribution of magnetic moment can therefore be rewritten as

\[\begin{split}\begin{aligned} \vec{b}(\vec{r}) & = \int_{\vec{r}_0 \in V_0} \frac{\mu_0}{4 \pi } \vec{m}(\vec{r}_0) \cdot \nabla_{\vec{r}_0} \left( \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3} \right) = \\ & = - \frac{\mu_0}{4\pi} \oint_{\vec{r}_0 \in \partial V_0} \frac{\vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3} \times \underbrace{ \left( - \hat{\vec{n}}(\vec{r}_0) \times \vec{m}(\vec{r}_0) \right) }_{\vec{j}^s_M} - \frac{\mu_0}{4 \pi} \int_{\vec{r}_0 \in V_0} \frac{\vec{r} - \vec{r}_0}{|\vec{r}-\vec{r}_0|^3} \times \underbrace{ \left(\nabla_{\vec{r}_0} \times \vec{m}(\vec{r}_0) \right)}_{\vec{j}_M} \ , \end{aligned}\end{split}\]

having defined the surface magnetization current density \(\vec{j}^s_M\) and the volume magnetization current density \(\vec{j}_M\) as the intensities of the distributed singularities, in analogy with the expression of the Biot-Savart law.

2.2.7.3. Reformulation of Maxwell’s Equations and Charge Continuity#

The Ampère-Maxwell law can be rewritten

\[\begin{split}\begin{aligned} & \nabla \times \vec{b} - \mu_0 \varepsilon_0 \partial_t \vec{e} = \mu_0 \vec{j} \\ & \nabla \times \vec{b} - \mu_0 \partial_t \left( \vec{d} - \vec{p} \right) = \mu_0 \left( \vec{j}_f + \vec{j}_P + \vec{j}_M \right) \\ & \nabla \times \underbrace{\left( \vec{b} - \mu_0 \vec{m} \right)}_{=: \mu_0 \vec{h}} - \mu_0 \partial_t \vec{d} + \mu_0 \underbrace{\left( \partial_t \vec{p} - \vec{j}_P \right)}_{= \vec{0}} = \mu_0 \vec{j}_f \\ \\ & \nabla \times \vec{h} - \partial_t \vec{d} = \vec{j}_f \end{aligned}\end{split}\]

From the continuity equation of electric current,

\[\partial_t \rho + \nabla \cdot \vec{j} = 0 \ ,\]

we derive the continuity equation for magnetization charges

\[\begin{split}\begin{aligned} 0 & = \partial_t \rho_M + \nabla \cdot \vec{j}_M = \\ & = \partial_t \rho_M + \underbrace{ \nabla \cdot \nabla \times \vec{m}}_{ \equiv \vec{0} } \ . \end{aligned}\end{split}\]