8. Time derivative of integrals over moving domains#

Some results about time derivatives of integrals over moving domains are collected here. These results are useful for writing balance equations of physical quantities in integral form over arbitrary domains, like:

Link to hand-written notes.

8.1. Volume density#

Reynolds transport theorem. Given a volume \(V(t)\) with boundary \(\partial V(t)\), whose points \(\vec{r} \in \partial V(t)\) have velocity \(\vec{v}_b\),

\[\dfrac{d}{dt} \int_{V(t)} f = \int_{V(t)} \dfrac{\partial f}{\partial t} + \oint_{\partial V(t)} f \vec{v}_b \cdot \hat{n} \ .\]
“Proof”
\[\begin{split}\begin{aligned} \dfrac{d}{dt} \int_{v(t)} f(\vec{r}, t) \, dt & = \lim_{\Delta t \rightarrow 0 } \frac{1}{\Delta t} \left[ \int_{v(t+\Delta t)} f(\vec{r}, t+\Delta t) - \int_{v(t)} f(\vec{r}, t) \right] = \\ & = \lim_{\Delta t \rightarrow 0 } \frac{1}{\Delta t} \left[ \int_{v(t)} \big\{ f(\vec{r}, t+\Delta t) - f(\vec{r}, t) \big\} + \int_{\Delta v(t;\Delta t)} f(\vec{r}, t) \right] = \\ & = \lim_{\Delta t \rightarrow 0 } \frac{1}{\Delta t} \left[ \int_{v(t)} \left\{ \Delta t \, \dfrac{ \partial f}{\partial t}( \vec{r}, t) + o(\Delta t) \right\} + \oint_{\partial v(t)} \left\{ \Delta t \, \vec{v}_b \cdot \hat{n} \, f(\vec{r}, t) + o(\Delta t) \right\} \right] = \\ & = \int_{v(t)} \dfrac{\partial f}{\partial t} + \oint_{\partial v(t)} f \vec{v}_b \cdot \hat{n} \ . \end{aligned}\end{split}\]

8.2. Flux across a surface#

\[\frac{d}{dt} \int_{S(t)} \vec{f} \cdot \hat{n} = \int_{S(t)} \frac{\partial \vec{f}}{\partial t} \cdot \hat{n} + \int_{S(t)} \nabla \cdot \vec{f} \,\, \vec{v}_b \cdot \hat{n} - \int_{\partial S(t)} \vec{v}_b \times \vec{f} \cdot \hat{t} \]
“Proof”
\[\begin{split}\begin{aligned} \dfrac{d}{dt} \int_{s(t)} \vec{f}(\vec{r}, t) \cdot \hat{n} \, dt & = \lim_{\Delta t \rightarrow 0 } \frac{1}{\Delta t} \left[ \int_{s(t+\Delta t)} \vec{f}(\vec{r}, t+\Delta t) \cdot \hat{n}(\vec{r}, t+\Delta t) - \int_{s(t)} f(\vec{r}, t) \cdot \hat{n}(\vec{r}, t) \right] = \\ & = \lim_{\Delta t \rightarrow 0 } \frac{1}{\Delta t} \left[ \int_{s(t+\Delta t)} \vec{f}(\vec{r}, t+\Delta t) \cdot \hat{n}(\vec{r}, t+\Delta t) - \int_{s(t)} f(\vec{r}, t) \cdot \hat{n}(\vec{r}, t) \right. + \\ & \left. \qquad \qquad - \int_{s(t)} \vec{f}(\vec{r}, t + \Delta t) \cdot \hat{n}(\vec{r}, t) + \int_{s(t)} \vec{f}(\vec{r}, t + \Delta t) \cdot \hat{n}(\vec{r}, t) \right] = \\ & = \lim_{\Delta t \rightarrow 0} \dfrac{1}{\Delta t} \left[ \int_{s(t)} \Delta t \dfrac{\partial \vec{f}}{\partial t} \cdot \hat{n} + o(\Delta t) + \oint_{\partial \Delta v(t;\Delta t)} \vec{f} \cdot \hat{n} - \oint_{\partial s(t)} \Delta t \vec{f} \cdot \hat{t} \times \vec{v}_b \right]= \\ & = \int_{s(t)} \dfrac{\partial \vec{f}}{\partial t} \cdot \hat{n} + \int_{s} \nabla \cdot \vec{f} \, \vec{v}_b \cdot \hat{n} - \oint_{\partial s(t)} \vec{v}_b \times \vec{f} \cdot \hat{t} \ . \end{aligned}\end{split}\]

having used

\[\oint_{\partial \Delta v(t;\Delta t)} \vec{f} \cdot \hat{n} = \int_{\Delta v} \nabla \cdot \vec{f} = \Delta t \int_{s} \nabla \cdot \vec{f} \, \hat{n} \cdot \vec{v}_b + o(\Delta t)\]

8.3. Work line integral along a line#

\[\frac{d}{dt} \int_{\ell(t)} \vec{f} \cdot \hat{t} = \int_{\ell(t)} \frac{\partial \vec{f}}{\partial t} \cdot \hat{t} + \int_{\ell(t)} \nabla \times \vec{f} \cdot \vec{v}_b \times \hat{t} + \vec{f}_B \cdot \vec{v}_B - \vec{f}_A \cdot \vec{v}_A \]
“Proof”
\[\begin{split}\begin{aligned} \dfrac{d}{dt} \int_{\ell(t)} \vec{f}(\vec{r}, t) \cdot \hat{t}(\vec{r},t) \, dt & = \lim_{\Delta t \rightarrow 0 } \frac{1}{\Delta t} \left[ \int_{\ell(t+\Delta t)} \vec{f}(\vec{r}, t+\Delta t) \cdot \hat{t}(\vec{r}, t+\Delta t) - \int_{\ell(t)} \vec{f}(\vec{r}, t) \cdot \hat{t}(\vec{r}, t) \right] = \\ & = \lim_{\Delta t \rightarrow 0 } \frac{1}{\Delta t} \left[ \int_{\ell(t+\Delta t)} \vec{f}(\vec{r}, t+\Delta t) \cdot \hat{t}(\vec{r}, t+\Delta t) - \int_{\ell(t)} f(\vec{r}, t) \cdot \hat{t}(\vec{r}, t) \right. + \\ & \left. \qquad \qquad - \int_{\ell(t)} \vec{f}(\vec{r}, t + \Delta t) \cdot \hat{t}(\vec{r}, t) + \int_{\ell(t)} \vec{f}(\vec{r}, t + \Delta t) \cdot \hat{t}(\vec{r}, t) \right] = \\ & = \lim_{\Delta t \rightarrow 0 } \frac{1}{\Delta t} \left[ \int_{\ell(t+\Delta t)} \Delta t \, \dfrac{\partial \vec{f}}{\partial t}(\vec{r}, t+\Delta t) \cdot \hat{t}(\vec{r}, t+\Delta t) + \right. \\ & \left. \qquad \qquad + \oint_{\partial \Delta s(t)} f(\vec{r}, t) \cdot \hat{t}(\vec{r}, t) - \Delta t \vec{f}_A \cdot \vec{v}_A + \Delta t \vec{f}_B \cdot \vec{v}_B + o(\Delta t) \right] = \\ & = \int_{\ell(t)} \frac{\partial \vec{f}}{\partial t} \cdot \hat{t} + \int_{\ell(t)} \nabla \times \vec{f} \cdot \vec{v}_b \times \hat{t} + \vec{f}_B \cdot \vec{v}_B - \vec{f}_A \cdot \vec{v}_A \ . \end{aligned}\end{split}\]

having used

\[\oint_{\partial \Delta s(t;\Delta t)} \vec{f} \cdot \hat{t} = \int_{\Delta s} \hat{n} \cdot \nabla \times \vec{f} = \Delta t \int_{\ell} \nabla \times \vec{f} \cdot \hat{v}_b \times \vec{t} + o(\Delta t)\]