11. Dirac’s delta#
Dirac’s delta \(\delta(x)\) is a distribution, or generalized function, with the following properties
for \(\forall f(x)\) “regular” todo what does regular mean?
11.1. Dirac’s delta in terms of regular functions#
11.1.1. Piece-wise constant#
Properties - proof.
Unitariety
\[\int_{x=-\infty}^{\infty} r_{\varepsilon}(x-x_0) \, dx = \int_{x=x_0-\frac{\varepsilon}{2}}^{x_0+\frac{\varepsilon}{2}} \frac{1}{\varepsilon} \, dx = 1 \ , \]for \(\forall \varepsilon\);
Shift property, using mean-value theorem of continuous functions
\[\int_{x=-\infty}^{\infty} r_{\varepsilon}(x-x_0) f(x) \, dx = \int_{x=x_0-\frac{\varepsilon}{2}}^{x_0+\frac{\varepsilon}{2}} \frac{1}{\varepsilon} f(x) \, dx = \frac{1}{\varepsilon} \varepsilon f(\xi) \ , \]with \(\xi \in \left[x_0-\frac{\varepsilon}{2}, x_0+\frac{\varepsilon}{2}\right]\), for the mean value theorem. As \(\varepsilon \rightarrow 0\), \(\xi \rightarrow x_0\), and thus
\[\int_{x=-\infty}^{\infty} r_{\varepsilon}(x-x_0) f(x) \, dx \rightarrow f(x_0) \]
11.1.2. Piecewise-linear#
Properties - proof
Unitariety
\[\int_{x=-\infty}^{\infty} t_{\varepsilon}(x-x_0) \, dx = \int_{x=x_0-\frac{\varepsilon}{2}}^{x_0+\frac{\varepsilon}{2}} \frac{2}{\varepsilon} \left( 1 - \frac{2 |x|}{\varepsilon} \right) \, dx = \frac{1}{2} \varepsilon \frac{2}{\varepsilon} = 1 \ , \]for \(\forall \varepsilon\);
Shift property, using mean-value integration scheme in \(x \in \left[x_0-\frac{\varepsilon}{2}, x_0 \right]\), \(x \in \left[x_0, x_0+\frac{\varepsilon}{2} \right]\) (todo why?)
\[\begin{split}\begin{aligned} \int_{x=-\infty}^{\infty} t_{\varepsilon}(x-x_0) f(x) \, dx & = \int_{x=x_0-\frac{\varepsilon}{2}}^{x_0+\frac{\varepsilon}{2}} \frac{2}{\varepsilon} \left( 1 - \frac{2 |x-x_0|}{\varepsilon} \right) f(x) \, dx = \\ & = \int_{x=x_0-\frac{\varepsilon}{2}}^{x_0} \frac{2}{\varepsilon} \left( 1 - \frac{2 |x-x_0|}{\varepsilon} \right) f(x) \, dx + \int_{x=x_0}^{x_0+\frac{\varepsilon}{2}} \frac{2}{\varepsilon} \left( 1 - \frac{2 |x-x_0|}{\varepsilon} \right) f(x) \, dx = \\ & = \frac{\varepsilon}{2} \frac{2}{\varepsilon} \left( 1 - \frac{2}{\varepsilon}\frac{\varepsilon}{4} \right) f\left(x_0-\frac{\varepsilon}{4} \right) \, dx + \frac{\varepsilon}{2} \frac{2}{\varepsilon} \left( 1 - \frac{2}{\varepsilon}\frac{\varepsilon}{4} \right) f\left(x_0+\frac{\varepsilon}{4} \right) \, dx = \\ & = \frac{1}{2} f\left( x_0 - \frac{\varepsilon}{4} \right) + \frac{1}{2} f\left( x_0 + \frac{\varepsilon}{4} \right) \end{aligned}\end{split}\]As \(\varepsilon \rightarrow 0\)
\[\int_{x=-\infty}^{\infty} t_{\varepsilon}(x-x_0) f(x) \, dx \rightarrow f(x_0) \]
11.1.3. Gaussian approximation#
For \(\alpha \rightarrow +\infty\),
Properties - proof
Fourier transform of \(\varphi_{\alpha}(x)\) reads
for \(\alpha \rightarrow +\infty\),
Fourier transform of Dirac’s delta is \(1\), as shown in (14.3), thus \(\varphi_\alpha(x) \rightarrow \delta(x)\) for \(\alpha \rightarrow +\infty\).
11.1.4. Fourier anti-transform#
For \(a \rightarrow + \infty\),
or
Proof of the equilvanece
11.1.5. \(\text{sinc}(x)\) approximation#
For \(a \rightarrow +\infty\)
Proof
Directly follows from integral of the approximation (11.3)
11.1.6. Fourier series#
For \(x \in [-\pi, \pi]\), and \(N \rightarrow +\infty\), Fourier series of Dirac’s delta (train with period \(2\pi\)) reads
or the \(T\)-periodic Dirac’s delta train,
todo Write the proof of the last expression, using the relation between complex exponentials and cosine and sine
Proof
Coefficients of the Fourier series of Dirac’s delta (train with period \(T = 2 \pi\)) are evaluated using the expression (14.2)
and thus the complex Fourier series (14.1) of Dirac’s delta reads
Obs. here, integration interval \([-\pi,\pi]\) to “avoid troubles” with Dirac’s delta on the extreme points of the interval (it would give \(1/2\) and \(1/2\) contributions on both extremes…)
It’s possible to write the \(T\)-periodic Dirac’s delta train as