Skip to main content
Ctrl+K
basics - math - Home

Linear Algebra

  • 1. Introduction to Linear Algebra
  • 2. Matrices
  • 3. Matrix factorizations
    • 3.3. Singular Value Decomposition
  • 4. Linear Systems

Multivariable Calculus

  • 5. Introduction to multi-variable calculus

Differential Geometry

  • 6. Introduction to Differential Geometry

Vector and Tensor Algebra and Calculus

  • 7. Tensor Algebra
  • 8. Tensor Calculus in Euclidean Spaces
    • 8.5. Tensor Calculus in Euclidean Spaces - Cartesian coordinates in \(E^3\)
    • 8.6. Tensor Calculus in Euclidean Spaces - cylindrical coordinates in \(E^3\)
    • 8.7. Tensor Calculus in Euclidean Spaces - Spehrical coordinates in \(E^3\)
  • 9. Time derivative of integrals over moving domains
  • 10. Calculus identities

Functional Analysis

  • 11. Introduction to Functional Analysis
  • 12. Dirac’s delta

Complex Calculus

  • 13. Complex Analysis
  • 14. Laplace Transform
  • 15. Fourier Transforms
    • 15.1. Fourier Series
    • 15.2. Fourier Transform
    • 15.3. Relations between Fourier transforms

Calculus of Variations

  • 16. Introduction to Calculus of Variations

Ordinary Differential Equations

  • 17. Introduction to Ordinary Differential Equations
  • 18. Linear Time-Invariant Systems
  • 19. LTI system response

Partial Differential Equations

  • 20. Introduction to Partial Differential Equations
  • 21. Elliptic equations
  • 22. Parabolic equations
  • 23. Hyperbolic problems
  • 24. Navier-Cauchy equations
  • 25. Navier-Stokes equations
  • 26. Arbitrary Lagrangian-Eulerian description

Numerical Methods for PDEs

  • 27. Introduction to numerical methods for PDEs
    • 27.1. Finite Element Method
    • 27.2. Finite Volume Method
    • 27.3. Boundary Element Method

Boundary Methods for PDEs

  • 28. Green’s function method

Optimization

  • 29. Optimization

Reinforcement Learning

  • 30. Introduction to Reinforcement Learning
  • 31. Markov Processes
  • 32. Methods of solution of MPD: DP and LP
  • 33. Methods of solution of MPD: RL
  • 34. Large or Continuous MDPs
  • .md

Navier-Stokes equations

Contents

  • 25.1. Incompressibility constraint
    • 25.1.1. Wave-vector transformed space
  • 25.2. Weak formulation of the problem
    • 25.2.1. Weak formulation and incompressibility constraint
  • 25.3. Non-linear term

25. Navier-Stokes equations#

Incompressible Navier-Stokes equations read

\[\begin{split}\begin{cases} \rho \partial_t \vec{u} + \rho \left( \vec{u} \cdot \nabla \right) \vec{u} - \mu \nabla^2 \vec{u} + \nabla P = \rho \vec{g} \\ \nabla \cdot \vec{u} = 0 \ . \end{cases}\end{split}\]

Mass balance equation is replaced by the incompressiblity kinematic constraint, \(\nabla \cdot \vec{u} = 0\): this constraint is not dynamic, as time derivative of density does not appear in the equation. With the incompressibility constraint, mass equation tells us that material particles keep their density constant,

\[0 = \underbrace{\partial_t \rho + \vec{u} \cdot \nabla \rho}_{=\frac{D \vec{\rho}}{D t}} + \rho \underbrace{\nabla \cdot \vec{u}}_{=0} = \frac{D \rho}{D t} \ , \]

whose solution can be written using material coordinates \(\vec{r}_0\) as \(\rho(\vec{r}(\vec{r}_0,t), t) = \rho_0(\vec{r}_0, t)\).

25.1. Incompressibility constraint#

Incompressibility constraint makes thermodynamic fade, while pressure field is replaced by/contains the contribution of a Lagrangian multiplier related to the incompressiblity constraint.

25.1.1. Wave-vector transformed space#

Transforming the fields from physical space to the wave-vector space \(\widetilde{u}(\vec{\kappa}, t) = \mathscr{F}\left\{ \vec{u}(\vec{r},t) \right\}\), Navier-Stokes equations for incompressible fluids with uniform and constant density \(\rho(\vec{r},t) = \rho\) becomes

\[\begin{split}\begin{cases} \rho \partial_t \widetilde{u} + \mathscr{F}\left\{ \left( \vec{u} \cdot \nabla \right) \vec{u} \right\} + \mu |\vec{\kappa}|^2 \widetilde{u} + i \vec{k} \widetilde{P} = \rho \widetilde{g} \\ i \vec{\kappa} \cdot \widetilde{u} = 0 \ . \end{cases}\end{split}\]

Taking the divergence of the momentum balance equation, i.e. taking the scalar product with \(i \vec{\kappa}\) in the transformed space, and using the incompressibility constraint to set \(i \vec{\kappa} \cdot \widetilde{u} = 0\),

\[i \vec{\kappa} \cdot \mathscr{F}\left\{ (\vec{u} \cdot \nabla ) \vec{u} \right\} - |\vec{\kappa}|^2 \widetilde{P} = i \vec{\kappa} \cdot \rho \widetilde{g} \ ,\]

so that the transformed pressure field becomes

\[\widetilde{P} = \frac{i \vec{\kappa}}{|\vec{\kappa}|^2} \cdot \mathscr{F} \left\{ \left( \vec{u} \cdot \nabla \right) \vec{u} - \rho \vec{g} \right\} \ ,\]

Replacing this expression in the transformed Navier-Stokes equations, the meaning of the pressure field as a Lagrange multiplier associated with incompressibility constraint becomes clear,

\[\rho \partial_t \widetilde{u} + \mu |\vec{\kappa}|^2 \widetilde{u} = \left[ 1 - \frac{\vec{\kappa} \vec{\kappa}}{|\vec{\kappa}|^2} \right] \cdot \mathscr{F}\left\{ - (\vec{u} \cdot \nabla) \vec{u} + \rho \widetilde{g} \right\}\]

as the orthogonal projector \([ 1 - \frac{\vec{\kappa} \vec{\kappa}}{|\vec{\kappa}|^2}]\) onto the space of divergence-free functions acts on the non-linear and forcing terms.

25.2. Weak formulation of the problem#

\[\begin{split}\begin{aligned} 0 & = \int_{V} \vec{w} \cdot \left[ \rho \partial_t \vec{u} + \rho ( \vec{u} \cdot \nabla ) \vec{u} - 2 \mu \nabla \cdot \mathbb{D}(\vec{u}) + \nabla P - \rho \vec{g} \right] - \int_{V} v \nabla \cdot \vec{u} = \\ & = \int_{V} \vec{w} \cdot \left[ \rho \partial_t \vec{u} + \rho ( \vec{u} \cdot \nabla ) \vec{u} \right] + \int_V 2 \mu \nabla \vec{w} : \mathbb{D} - \int_V \nabla \cdot \vec{w} P - \int_V \vec{w} \cdot \rho \vec{g} - \int_{V} v \nabla \cdot \vec{u} - \int_{\partial V} \hat{n} \cdot \left( \mathbb{S} - P \mathbb{I} \right) \cdot \vec{w} \ , \end{aligned}\end{split}\]

25.2.1. Weak formulation and incompressibility constraint#

\[\vec{r}(\vec{r}_0, t) = \vec{r}(q(t), t)\]
\[\vec{u} = \dfrac{D \vec{r}}{D t} = \dot{q} \dfrac{\partial \vec{r}}{\partial q} + \dfrac{\partial \vec{r}}{\partial t}\]

In the weak formulation, using \(\vec{w} = \frac{\partial \vec{r}}{\partial q} = \frac{\partial \vec{u}}{\partial \dot{q}}\)

\[\begin{aligned} 0 & = \int_{V} \vec{w} \cdot \rho \frac{D \vec{u}}{D t} + \int_V 2 \mu \nabla \vec{w} : \mathbb{D} - \int_V \nabla \cdot \vec{w} P - \int_V \rho \vec{w} \cdot \vec{g} - \int_{V} v \nabla \cdot \vec{u} - \int_{\partial V} \vec{t}_{\hat{n}} \cdot \vec{w} \ , \end{aligned}\]
\[\begin{split}\begin{aligned} \int_V \vec{w} \cdot \rho \dfrac{D \vec{u}}{Dt} \, dV & = \int_{V_0} \rho_0 \frac{\partial \vec{u}}{\partial \dot{q}} \cdot \dfrac{D \vec{u}}{D t} = \\ & = \int_{V_0} \rho_0 \dfrac{D}{D t} \left( \frac{\partial \vec{u}}{\partial \dot{q}} \cdot \vec{u} \right) \, dV_0 - \int_{V_0} \rho_0 \dfrac{D}{Dt} \left( \dfrac{\partial \vec{r}}{\partial \dot{q}} \right) \cdot \vec{u} \, dV_0 = \\ & = \int_{V_0} \rho_0 \dfrac{D}{D t} \left( \frac{\partial}{\partial \dot{q}} \frac{|\vec{u}|^2}{2} \right) \, dV_0 - \int_{V_0} \rho_0 \dfrac{\partial }{\partial q} \frac{|\vec{u}|^2}{2} \, dV_0 = \\ \end{aligned}\end{split}\]

…

25.3. Non-linear term#

Different ways to treat the non-linear term:

  • Semi-linear approximation of the non-linear term

    \[( \vec{u}(\vec{r}, t^n) \cdot \nabla ) \vec{u}(\vec{r}, t^n) \sim ( \vec{u}^*(\vec{r}, t^n) \cdot \nabla ) \vec{u}(\vec{r}, t^n) \ , \]

    with \(\vec{u}^*(\vec{r}, t^n)\) an approximation of \(\vec{u}(\vec{r},t^n)\) involving values of the velocity field at previous time-steps, as an example

    \[\begin{split}\vec{u}^*(\vec{r}, t^n) = \begin{cases} \vec{u}(\vec{r}, t^{n-1}) & \text{$1^{st}$-order} \\ 2 \vec{u}(\vec{r}, t^{n-1}) - \vec{u}(\vec{r}, t^{n-2}) & \text{$2^{nd}$-order} \\ \end{cases}\end{split}\]

previous

24. Navier-Cauchy equations

next

26. Arbitrary Lagrangian-Eulerian description

Contents
  • 25.1. Incompressibility constraint
    • 25.1.1. Wave-vector transformed space
  • 25.2. Weak formulation of the problem
    • 25.2.1. Weak formulation and incompressibility constraint
  • 25.3. Non-linear term

By basics

© Copyright 2022.