12. Complex Analysis#

12.1. Complex functions, \(f: \mathbb{C} \rightarrow \mathbb{C}\)#

A complex function \(f\) of complex variable \(z = x + i y\), \(f: \mathbb{C} \rightarrow \mathbb{C}\), can be written as

\[f(z) = \tilde{u}(z) + i \tilde{v}(z) = u(x,y) + i v(x,y) \ ,\]

as the sum of its real part \(u(z)\) and \(i\) times its imaginary part \(v(x,y)\). Here \(x,y \in \mathbb{R}\), while \(\tilde{u}(z), \tilde{v}(z): \mathbb{C} \rightarrow \mathbb{R}\) and \(u(x,y), v(x,y): \mathbb{R}^2 \rightarrow \mathbb{R}\). With some abuse of notation, tilde won’t be always explicitly written when arguments of real and imaginary parts of \(f\) functions won’t be written.

12.1.1. Limit#

\[\lim_{z \rightarrow z_0} f(z) = f(z_0) \qquad , \qquad \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{ s.t. } \ |f(z) - f(z_0)| < \delta \ \forall z \text{ s.t. } |z - z_0| < \varepsilon, \ z \ne z_0 \ .\]

12.1.2. Derivative#

Using the definition of limit of complex functions, the derivative of a function \(f: \mathbb{C} \rightarrow \mathbb{C}\), if it exists, is the limit of incremental ratio,

\[f'(z) = \lim_{\Delta z \rightarrow 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} \ .\]

12.1.3. Line Integrals#

Given a line \(\gamma \in \mathbb{C}\), whose parametric form is \(z(s)\), with regular parametrization with parameter \(s \in [s_0, s_1]\),

\[\int_{\gamma} f(z) \, dz = \int_{s=s_0}^{s_1} f(z(s)) \, z'(s) \, ds \ .\]

12.2. Holomorphic Functions - Analytic Functions#

Definition 12.1

A holomorphic function is a function whose derivative exists.

Examples of analytic functions. todo

12.2.1. Cauchy-Riemann conditions#

For a holomorphic function \(f(z) = u(x,y) + i v(x,y)\), Cauchy-Riemann conditions

\[\begin{split}\begin{cases} u_{/x} = v_{/y} \\ u_{/y} = - v_{/x} \end{cases}\end{split}\]

hold. The evaluation of the derivative once with \(\Delta z = \Delta x\) and once with \(\Delta z = i \Delta y\)

\[\begin{split}\begin{aligned} & f'(z) = \lim_{\Delta z \rightarrow 0} \frac{f(z+\Delta z) - f(z)}{\Delta z} = \\ & = \left\{ \begin{aligned} \lim_{\Delta x \rightarrow 0} \frac{f(x+\Delta x,y) - f(x,y)}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{u(x+\Delta x,y) + i v(x+\Delta x,y) - u(x,y) - i v(x,y)}{\Delta x} = u_{/x} + i v_{/x} \\ \lim_{\Delta y \rightarrow 0} \frac{f(x,y+\Delta y) - f(x,y)}{i \Delta y} = \lim_{\Delta y \rightarrow 0} \frac{u(x,y+\Delta y) + i v(x,y+\Delta y) - u(x,y) - i v(x,y)}{i \Delta y} = -i u_{/y} + v_{/y} \\ \end{aligned} \right. \end{aligned}\end{split}\]

provides the proof.

12.2.2. Cauchy Theorem#

For a holomorphic function \(f\), \(f: \Omega \subseteq \mathbb{C} \rightarrow \mathbb{C}\)

\[\oint_{\gamma} f(z) \, dz = 0 \ ,\]

for \(\forall \gamma \subset \Omega\). Proof follows from Green’s lemma, and Cauchy-Riemann conditions

\[\begin{split}\begin{aligned} \oint_{\gamma} f(z) dz & = \oint_{\gamma} \left( u(x,y) + i v(x,y) \right) \left( dx + i dy \right) = \\ & = \oint_{\gamma} \left( u dx - v dy \right) + i \oint_{\gamma} \left( u dy + v dx \right) = \\ & = - \int_{S} \left( \underbrace{u_{/y} + v_{/x}}_{=0} \right) \, dx \, dy + i \int_{S} \left( \underbrace{u_{/x} - v_{/y}}_{=0} \right) \, dx \, dy = 0 \ . \end{aligned}\end{split}\]

12.3. Useful integrals#

12.3.1. Independence of line integral for holomorphic functions#

For a function \(f(z)\) analytic in \(D\), the line integral on paths \(\ell_{ab,i}\) with the same extreme points \(a\), \(b\) contained in \(D\) is independent on the path, but only depends on the extreme points \(a\), \(b\),

\[\int_{\ell_{ab,1}} f(z) \, dz = \int_{\ell_{ab,2}} f(z) \, dz\]

The proof readily follows, using Cauchy theorem applied to a function \(f(z): D \subseteq \mathbb{C} \rightarrow \mathbb{C}\), analytic in \(D\), and splitting the closed path \(\gamma\) into two paths \(\ell_1\), \(\ell_2\) with the same extreme points, \(\gamma = \ell_1 \cup (- \ell_2)\)

\[0 = \oint_{\gamma} f(z) \, dz = \int_{\ell_1} f(z) \, dz + \int_{-\ell_2} f(z) \, dz = \int_{\ell_1} f(z) \, dz - \int_{\ell_2} f(z) \, dz \ .\]

12.3.2. Sum and difference of line integrals#

12.3.3. Integral of \(z^n\)#

Given a path \(\gamma\) embracing \(z=0\) only once in counter-clockwise direction, and \(n \in \mathbb{Z}\)

\[\begin{split}\oint_{\gamma} z^n \, dz = \left\{ \begin{aligned} 2 \pi i & \qquad \text{if $n = -1$} \\ 0 & \qquad \text{otherwise} \end{aligned} \right.\end{split}\]

Since \(z^n\) is analytic everywhere (todo prove it! Add a section with proofs for common functions) except for \(z=0\), it’s possible to evaluate the integral on a circle with center \(z=0\) and radius \(R\). Using polar expression of the complex numbers on the circle, \(z = R e^{i \theta}\), \(\theta \in [0, 2 \pi]\), \(R\) const, the differential becomes \(dz = i R e^{i \theta} d \theta\) and the integral

\[\begin{split}\begin{aligned} \oint_{\gamma} z^n \, dz & = \int_{\theta=0}^{2 \pi} \left( R e^{i\theta}\right)^n i R e^{i \theta} d \theta = \\ & = i \int_{\theta=0}^{2 \pi} R^{n+1} e^{i (n+1) \theta} d \theta = \\ & = \left\{ \begin{aligned} & \text{if $n=-1$} & : & \quad i 2 \pi \\ & \text{otherwise} & : & \quad i R^{n+1} \frac{1}{i(n+1)} \left.e^{i(n+1)\theta}\right|_{\theta=0}^{2\pi} = \frac{R^{n+1}}{n+1} ( 1 - 1 ) = 0 \\ \end{aligned} \right.\\ \end{aligned}\end{split}\]

12.4. Meromorphic functions#

Definition 12.2

A meromorphic function in a domain is a function holomorphic everywhere except for a (finite?) number of poles. check

12.4.1. Singularities#

Definition 12.3 (Pole)

A pole of order \(n\) of a function \(f(z)\) is a complex number \(a\) so that

\[f(z) = \frac{\phi(z)}{(z-a)^n} \ ,\]

with \(\phi(z)\) holomorphic in \(\phi(a) \ne 0\)

Examples.

Definition 12.4 (Branch)

Examples. \(f(z) = z^{\frac{1}{2}}\)

Definition 12.5 (Removable singularities)

Example. \(f(z) = \frac{\sin z}{z}\)

Other irregularities.

12.4.2. Laurent Series#

Given a function \(f(z)\), in a disk \(D_{a,\varepsilon}: 0 < |z-a| < \varepsilon\), its Laurent series centered in \(a\) is the convergent (to \(f(z)\), todo which type of convergnence?) series

(12.1)#\[f(z) \sim \sum_{n=-\infty}^{+\infty} a_n (z-a)^n \ ,\]

with

(12.2)#\[a_n = \frac{1}{2 \pi i}\int_{\gamma} f(z) \, (z-a)^{-(n+1)} \, dz\]

and \(\gamma\) embracing \(z = a\) once counter-clockwise. Proof follows immediately inserting the expressions of the coefficients \(a_n\) and using the integral of \(z^n\). Evaluating the integral (12.2) of the coefficients of the Laurent series, using (12.1) to replace \(f(z)\) with its series

\[\begin{split}\begin{aligned} a_n & = \frac{1}{2 \pi i}\oint_{\gamma} \sum_{m=-\infty}^{+\infty} a_m (z-a)^m (z-a)^{-(n+1)} = \\ & = \frac{1}{2 \pi i} \oint_{\gamma} \sum_{m=-\infty}^{+\infty} a_m (z-a)^{m - n - 1} \, dz = \\ & = \frac{1}{2 \pi i} \oint_{\gamma} a_n \, z^{-1} \, dz = \\ & = a_n \ . \end{aligned}\end{split}\]

todo Some freestyle with function and its convergent series…add some detail, and the meaning of convergence

12.4.3. Cauchy formula#

For an analytic function \(f(z)\),

\[f(a) = \frac{1}{2 \pi i} \oint_{\gamma} \frac{f(z)}{z-a} \, dz\]

Proof readily follows using the integral of \(z^n\) on the Taylor series of \(\frac{f(z)}{z-a}\) whose \(0^{th}\) order term reads \(f(a)\),

\[\frac{1}{2\pi i} \oint_{\gamma} \frac{f(a)+\sum_{m=1}^{+\infty} f'(a) (z-a)^m}{z-a} \, dz = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(a)}{z-a} \, dz = f(a) \frac{2 \pi i}{2 \pi i} = f(a) \ .\]

12.4.4. Residues#

Definition 12.6 (Residue)

The residue of function \(f\) in \(a\), \(\text{Res}(f,a)\) is a complex number \(R\) so that \(f(z) - \frac{R}{(z-a)}\) has analytic antiderivative in a disk \(D_{a,\varepsilon}: \ 0 < |z-a| < \varepsilon\).

todo Explain this definition. Couldn’t be possible to use \(\text{Res}(f,a) = \frac{1}{2 \pi i} \oint_{\gamma} f(z) \, dz = a_{-1}\) instead?

Properties.

  • If \(f(z)\) is analytic in \(D_{a,\varepsilon}\) and has a pole of order \(n\) in \(z = a\), its Laurent series has \(a_m=0\) for \(m < n\) and reads

    (12.3)#\[f(z) = \sum_{m=-n}^{+\infty} a_m (z-a)^m \ ,\]

    with \(a_{-n} \ne 0\). Since \(f(z)\) has a pole of order \(n\) in \(z = a\), it can be written as

    \[f(z) = \frac{\phi(z)}{(z-a)^n} \ ,\]

    with \(\phi(z)\) analytic in \(D_{a,\varepsilon}\) and \(\phi(a) \ne 0\). Since \(\phi(z)\) is analytic, it has a Taylor series (or a Laurent series with non-negative powers),

    \[\phi(z) \sim \sum_{m=0}^{+\infty} b_m (z-a)^m \ ,\]

    (todo prove it! Extension of the real case. Add a link to the proof) and thus

    \[f(z) \sim \sum_{m=0}^{+\infty} b_m (z-a)^{m-n} = \sum_{m=-n}^{+\infty} b_{m+n} (z-a)^{m} = \sum_{m=-n}^{+\infty} a_{m} (z-a)^m \ , \]

    with \(a_m = b_{m+n}\).

  • For simple closed path \(\gamma\) (embracing \(a\) only once counter-clokwise) in \(D_{a, \varepsilon}\),

    (12.4)#\[\oint_{\gamma} f(z) \, dz = 2 \pi i a_{-1} = 2 \pi i \text{Res}(f,a)\]

    The proof readily follows, using the integral of \(z^n\) and Laurent series (12.1) of \(f(z)\),

    \[\oint_{\gamma} f(z) \, dz = \oint_{\gamma} \sum_{m=-\infty}^{+\infty} a_m (z-a)^m \, dz = 2 \pi i a_{-1} \ .\]
  • For a pole \(a\) of order \(n\), the following holds

    \[a_{-1} = \frac{1}{(n+1)!} \lim_{z \rightarrow a} \frac{d^{n-1}}{dz^{n-1}} \left[ (z-a)^n \, f(z) \right]\]

    The proof follows using Laurent series {eq}`eq:laurent:pole-n} for a function with pole of order \(n\), and evaluating the \((n-1)^{th}\) order derivative

    \[\begin{split}\begin{aligned} \frac{d^{n-1}}{dz^{n-1}} \left[ (z-a)^n f(z) \right] & = \frac{d^{n-1}}{dz^{n-1}} \left[ (z-a)^n \sum_{m=-n}^{+\infty} a_n (z-a)^m \right] = \\ & = \dfrac{d^{n-1}}{dz^{n-1}} \left[ \sum_{m=-n}^{+\infty} a_n (z-a)^{m+n} \right] = \\ & = \dfrac{d^{n-1}}{dz^{n-1}} \left[ \sum_{m=0}^{+\infty} a_{m-n} (z-a)^{m} \right] = \\ & = \dfrac{d^{n-2}}{dz^{n-2}} \left[ \sum_{m=0}^{+\infty} m a_{m-n} (z-a)^{m-1} \right] = \\ & = \dfrac{d^{n-3}}{dz^{n-3}} \left[ \sum_{m=0}^{+\infty} m(m-1) a_{m-n} (z-a)^{m-2} \right] = \\ & = \dots = \\ & = \left[ \sum_{m=0}^{+\infty} m! \, a_{m-n} (z-a)^{m-n+1} \right] \\ \end{aligned}\end{split}\]

    and then letting \(z \rightarrow a\), so that only the term with \(m-n+1 = 0\) survives

    \[\lim_{z \rightarrow a} \frac{d^{n-1}}{dz^{n-1}} \left[ (z-a)^n \sum_{m=-n}^{+\infty} a_n (z-a)^m \right] = (n-1)! \, a_{-1} \ .\]

12.4.5. Residue Theorem#

Theorem 12.1 (Residue Theorem)

Given \(f(z)\) with a finite number of poles \(p_n \in D\), then

\[\int_{\gamma} f(z) \, dz = 2 \pi i \ \sum_{n} I(\gamma, p_n) \text{Res}(f,p_n) \ ,\]

being \(\gamma\) a path in \(D\), and \(I(\gamma, p_n)\) the winding index of the path \(\gamma\) around pole \(p_n\) (+1 for each counter-clockwise loop, -1 for each clockwise loop).

The proof readily follows extending the result for a single pole (12.4) to general number of poles and general paths \(\gamma\) embracing (with sign) each pole \(p_n\) \(I(\gamma,p_n)\) times, with the same techinques shown in section Sum and difference of line integrals.

12.4.6. Evaluation of integrals#

12.4.7. Inverse Laplace Transform#

Given Laplace transform

\[F(s) := \mathscr{L}\{f(t)\}(s) := \int_{t=0^-}^{+\infty} f(t) e^{-st} \, dt \ ,\]

the inverse transform can be evaluated as

\[f(t) = \mathscr{L}^{-1}\{F(s)\}(t) := \lim_{T \rightarrow +\infty} \frac{1}{2 \pi i} \int_{s = a-iT}^{a+iT} e^{st} F(s) \, ds \ ,\]

with \(a > \text{Re}\{p_n\}\) (todo why?) for each pole of the function \(F(s)\), evaluated on the vertical line \(s = a+iy\), \(y \in [-T,T]\), \(ds = i d y\),

\[\begin{split}\begin{aligned} \lim_{T \rightarrow +\infty} \frac{1}{2 \pi i} \int_{s = a-iT}^{a+iT} e^{st} F(s) \, ds & = \lim_{T \rightarrow +\infty} \frac{1}{2 \pi i} \int_{s = a-iT}^{a+iT} e^{st} \int_{\tau=0^-}^{+\infty} f(\tau) e^{-s\tau} \, d \tau \, ds = \\ & = \lim_{T \rightarrow +\infty} \frac{1}{2 \pi i} \int_{y = -T}^{T} e^{(a+iy)t} \int_{\tau=0^-}^{+\infty} f(\tau) e^{-(a+iy)\tau} \, d \tau \, i dy = \\ & = \lim_{T \rightarrow +\infty} \frac{1}{2 \pi} \int_{y = -T}^{T} \int_{\tau=0^-}^{+\infty} e^{iy(t-\tau)} e^{a(t-\tau)} f(\tau) \, d \tau \, dy = \\ & = \dots \\ & = \int_{\tau=0^-}^{+\infty} \delta(t-\tau) e^{a(t-\tau)} f(\tau) d \tau = f(t) \ . \end{aligned}\end{split}\]

having used the transform of Dirac’s delta \(\delta(t) = \frac{1}{2\pi} \int_{\omega=-\infty}^{+\infty} e^{-j \omega t} \, d\omega\).

todo Ohter approach: if \(a > \text{Re}\{p_n\}\), the contour built with the vertical line with real part \(a\) and the arc of circumference on its…