3. Matrix factorizations#

  • Singular Value Decomposition (SVD)

  • Spectral decomposition Eigenvalues, eigenvectors; Jordan canonical formula…

3.1. Gershgorin circle theorem#

Let \(\mathbf{A}\) a complex \(n,n\) matrix. Let \(R_i = \sum_{j \ne i} |a_{ij}|\), and \(D(a_{ii}, R) \subseteq \mathbb{C}\) the closed disc centered at \(a_{ii}\) with radius \(R_i\) in the complex plane.

Every eigenvalue of \(\mathbf{A}\) lies within at least one of the Gershgorin discs \(D(a_{ii}, R_i)\).

Proof

Let \(\lambda\) an eigenvalue of \(\mathbf{A}\). Thus, it exsits a vector \(\mathbf{v}\) s.t. \(\mathbf{A} \mathbf{v} = \lambda \mathbf{v}\), or

\[\sum_{j} a_{ij} v_j = \lambda v_i \ .\]

Moving \(a_{ii}\) from the LHS to the RHS, it follows

\[\sum_{j \ne i} a_{ij} v_j = \left( \lambda - a_{ii} \right) v_i \ .\]

Selecting \(i\) s.t. \(|v_i| \ge |v_j|\), \(\forall j\) it follows that

\[|\lambda - a_{ii}| = \left| \sum_{j \ne i} a_{ij} \frac{v_j}{v_i} \right| \le \sum_{j \ne i} \left| a_{ij} \frac{v_j}{v_i} \right| \le \sum_{j \ne i} | a_{ij} | \le R_{i} \ .\]

3.2. Spectral radius#

Spectral radius of a matrix \(\mathbf{A}\) is defined as the maximum of the absolute value of its eigenvalues

\[\rho(\mathbf{A}) = \max |\lambda(\mathbf{A})| \ .\]
  • QR

  • LU

  • Schur

  • Cholesky Symmetric positive definite matrices have Choleski decomposition,

    \[\mathbf{M} = \mathbf{L} \mathbf{L}^* \ ,\]

    with \(\mathbf{L}\) lower triangular matrix. And thus quite easy to “invert”, for solving linear systems.