1.5.4. Rotation parametrization: quaternions
Here quaternion parametrization of rotations is introducing the unitary quaternion
(1.15)\[\mathbf{q} = q_0 + \vec{q} = \cos \frac{\theta}{2} + \sin \frac{\theta}{2} \vec{n} \ ,\]
into axis and angle parametrization.
Normalization condition.
\[1 = q_0^2 + \vec{q} \cdot \vec{q}\]
Rotation tensor
\[\mathbb{R} = \mathbb{I} + 2 q_0 \vec{q}_\times + 2 \vec{q}_{\times} \vec{q}_{\times} \ ,\]
Linearization
\[\Delta \mathbb{R} = 2 \Delta q_0 \vec{q}_\times + 2 q_0 \Delta \vec{q}_\times + 2 \Delta \vec{q}_\times \vec{q}_\times + 2 \vec{q}_\times \Delta \vec{q}_\times\]
\[\begin{split}\begin{aligned}
\vec{\theta}_{\Delta, \times} := & \ \Delta \mathbb{R} \cdot \mathbb{R}^T \\
\vec{\theta}_{\Delta} = & - 2 \vec{q} \Delta q_0 + 2 q_0 \Delta \vec{q} - 2 \vec{q}_\times \Delta \vec{q}
\end{aligned}\end{split}\]
Angular velocity
\[\begin{split}\begin{aligned}
\vec{\omega}_\times := & \ \dot{\mathbb{R}} \cdot \mathbb{R}^T \\
\vec{\omega} = & - 2 \vec{q} \dot{q}_0 + 2 q_0 \dot{\vec{q}} - 2 \vec{q}_\times \dot{\vec{q}}
\end{aligned}\end{split}\]
1.5.4.1. Rotation tensor
Introducing the expression (1.15) of the unitary quaternion into expression (1.13) of the rotation tensor written using axis and angle parametrization, and using trigonometric identities
\[\begin{split}\begin{aligned}
\sin \theta = \sin \left( 2 \frac{\theta}{2} \right) & = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \\
\cos \theta = \cos \left( 2 \frac{\theta}{2} \right) & = \cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2} = \\
& = 2 \cos^2 \frac{\theta}{2} - 1 = \\
& = 1 - 2 \sin^2 \frac{\theta}{2}
\end{aligned}\end{split}\]
the expression of the rotation tensor becomes
\[\begin{split}\begin{aligned}
\mathbb{R}
& = \mathbb{I} + \sin \theta \hat{n}_\times + ( 1 - \cos \theta ) \hat{n}_{\times} \hat{n}_{\times} = \\
& = \mathbb{I} + 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \hat{n}_\times + 2 \sin^2 \frac{\theta}{2} \hat{n}_{\times} \hat{n}_{\times} = \\
& = \mathbb{I} + 2 q_0 \vec{q}_\times + 2 \vec{q}_{\times} \vec{q}_{\times} \\
\end{aligned}\end{split}\]
1.5.4.2. Angular velocity
\[\begin{split}\begin{aligned}
\vec{\omega}_{\times}
& = \dot{\mathbb{R}} \cdot \mathbb{R}^T = \\
& = \left( 2 \dot{q}_0 \vec{q}_\times + 2 q_0 \dot{\vec{q}}_{\times} + 2 \dot{\vec{q}}_\times \vec{q}_\times + 2 \vec{q}_\times \dot{\vec{q}}_\times \right) \cdot \left( \mathbb{I} - 2 q_0 \vec{q}_\times + 2 \vec{q}_{\times} \vec{q}_{\times} \right) = \\
& = 2 \dot{q}_0 \vec{q}_\times + 2 q_0 \dot{\vec{q}}_{\times} + 2 \dot{\vec{q}}_\times \vec{q}_\times + 2 \vec{q}_\times \dot{\vec{q}}_\times + \\
& \ \ - 4 \dot{q}_0 q_0 \vec{q}_\times \vec{q}_\times - 4 q_0^2 \dot{\vec{q}}_{\times} \vec{q}_\times - \underbrace{4 q_0 \dot{\vec{q}}_\times \vec{q}_\times \vec{q}_\times}_{(a)} - \underbrace{4 q_0 \vec{q}_\times \dot{\vec{q}}_\times \vec{q}_\times}_{-4 q_0 \left( \dot{\vec{q}} \cdot \vec{q} \right) \vec{q}_\times} + \\
& \ \ + 4 \dot{q}_0 \underbrace{\vec{q}_\times \vec{q}_\times \vec{q}_\times}_{-|\vec{q}|^2 \vec{q}_\times} + \underbrace{4 q_0 \dot{\vec{q}}_{\times} \vec{q}_\times \vec{q}_\times}_{(a)} + 4 \dot{\vec{q}}_\times \underbrace{\vec{q}_\times \vec{q}_\times \vec{q}_\times}_{-|\vec{q}|^2 \vec{q}_\times} + \underbrace{4 \vec{q}_\times \dot{\vec{q}}_\times \vec{q}_\times \vec{q}_\times}_{-\left( \dot{\vec{q}} \cdot \vec{q} \right) \vec{q}_\times \vec{q}_\times} = \\
& = \underbrace{ 2 \dot{q}_0 \vec{q}_\times}_{(e)} + 2 q_0 \dot{\vec{q}}_{\times} + \underbrace{2 \dot{\vec{q}}_\times \vec{q}_\times}_{(c.1)} + 2 \vec{q}_\times \dot{\vec{q}}_\times + \\
& \ \ - 4 \underbrace{\dot{q}_0 q_0 \vec{q}_\times \vec{q}_\times}_{-(b)} - \underbrace{4 q_0^2 \dot{\vec{q}}_{\times} \vec{q}_\times}_{(c.2)} + \underbrace{4 q_0 \left( \dot{\vec{q}} \cdot \vec{q} \right) \vec{q}_\times}_{(d)} + \\
& \ \ - \underbrace{4 \dot{q}_0 |\vec{q}|^2 \vec{q}_\times}_{ 4\dot{q}_0 \vec{q}_\times - 4 \dot{q}_0 q_0^2 \vec{q}_\times = 2(e)-(d)} - \underbrace{4 |\vec{q}|^2 \dot{\vec{q}}_\times \vec{q}_\times}_{(c.3)} - \underbrace{4\left( \dot{\vec{q}} \cdot \vec{q} \right) \vec{q}_\times \vec{q}_\times}_{(b)} = \\
& = -2 \dot{q}_0 \vec{q}_\times + 2 q_0 \dot{\vec{q}}_\times - 2 \dot{\vec{q}}_\times \vec{q}_\times + 2 \vec{q}_\times \dot{\vec{q}}_\times = \\
& = \left[ - 2 \vec{q} \dot{q}_0 + 2 q_0 \dot{\vec{q}} - 2 \vec{q}_\times \dot{\vec{q}} \right]_\times
\end{aligned}\end{split}\]
having used
\(\vec{q}_\times^T = - \vec{q}_\times\), \(\left( \vec{q}_\times \vec{q}_\times \right)^T = \vec{q}_\times \vec{q}_\times\)
\(1 = q_0^2 + |\vec{q}|^2\), and thus \(\vec{q} \cdot \dot{\vec{q}} = - q_0 \dot{q}_0\)
\(\vec{q}_\times \vec{q}_\times = \vec{q} \otimes \vec{q} - |\vec{q}|^2 \mathbb{I}\)
\(\vec{q}_\times \vec{q}_\times \vec{q} = \underbrace{\vec{q}_\times \vec{q} \otimes \vec{q}}_{=\mathbb{0}} - |\vec{q}|^2 \vec{q}_{\times} = -|\vec{q}|^2 \vec{q}_{\times} \)
\(\dot{\vec{q}}_\times \vec{q}_\times = \vec{q} \, \dot{\vec{q}} - \left( \dot{\vec{q}} \cdot \vec{q} \right) \, \mathbb{I}\)
\(\vec{q}_\times \dot{\vec{q}}_\times = \dot{\vec{q}} \, \vec{q} - \left( \dot{\vec{q}} \cdot \vec{q} \right) \, \mathbb{I}\)
Using
\[(\vec{a} \times \vec{b}) \times \vec{c} + (\vec{b} \times \vec{c}) \times \vec{a} + (\vec{c} \times \vec{a}) \times \vec{b} = \vec{0} \]
(todo, prove it with index notation) it immediately follows the desired relation
\[\begin{split}\begin{aligned}
(\vec{a}_\times \vec{b})_{\times} \vec{v}
& = ( \vec{a} \times \vec{b} ) \times \vec{v} = \\
& = - ( \vec{b} \times \vec{v} ) \times \vec{a} - ( \vec{v} \times \vec{a} ) \times \vec{b} = \\
& = \vec{a} \times ( \vec{b} \times \vec{v} ) - \vec{b} \times ( \vec{a} \times \vec{v} ) = \\
& = \left( \vec{a}_{\times} \vec{b}_\times - \vec{b}_\times \vec{a}_\times \right) \vec{v}
\end{aligned}\end{split}\]