6. Hamiltonian Mechanics#
Riformulazione ulteriore della meccanica di Newton, a partire dalla meccanica di Lagrange. Fornisce le basi per un approccio moderno anche in altre teorie della Fisica. dots…
Starting from Lagrange equations derived in Lagrangian mechanics,
\[\dfrac{d}{dt}\Big( \frac{\partial \mathscr{L}}{\partial \dot{q}} \Big) - \frac{\partial \mathscr{L}}{\partial q} = Q_q\]
the generalized moment is defined as
\[p_k := \frac{\partial \mathscr{L}}{\partial \dot{q}^k} \ ,\]
and the Hamiltonian function as
\[\mathscr{H}(q^k(t), p_k(t), t) := p_k \dot{q}^k - \mathscr{L}(\dot{q}^l(q^k, p_k, t), q^l(t), t) \ ,\]
its differential reads
\[\begin{split}\begin{aligned}
d\mathscr{H} & = dq^k \, \frac{\partial \mathscr{H}}{\partial q^k} + dp_k \, \frac{\partial \mathscr{H}}{\partial p_k} + dt \, \frac{\partial \mathscr{H}}{\partial t} = \\
& = d p_k \, \dot{q}^k + \underbrace{ p_k \, d \dot{q}^k - d \dot{q}^k \, \frac{\partial \mathscr{L}}{\partial \dot{q}^k}}_{=0} - d q^k \, \frac{\partial \mathscr{L}}{\partial q^k} - dt \, \frac{\partial \mathscr{L}}{\partial t}
\end{aligned}\end{split}\]
and thus it follows
\[\begin{split}\begin{cases}
\dot{q}^k & = \dfrac{\partial \mathscr{H}}{\partial p_k} \\
\dfrac{\partial \mathscr{H}}{\partial q^k} & = - \dfrac{\partial \mathscr{L}}{\partial q^k} \\
\dfrac{\partial \mathscr{H}}{\partial t} & = - \dfrac{\partial\mathscr{L}}{\partial t} \ .
\end{cases}\end{split}\]
Recasting Lagrange equations as
\[\frac{\partial \mathscr{L}}{\partial q^k} = - Q_{q^k} + \dfrac{d}{dt}\Big( \frac{\partial \mathscr{L}}{\partial \dot{q}^k} \Big) = -Q_{q^k} + \dot{p}_k\]
Hamilton equations follow
\[\begin{split}\begin{cases}
\dot{q}^k & = \dfrac{\partial H}{\partial p_k} \\
\dot{p}_k & =-\dfrac{\partial H}{\partial q^k} + Q_{q^k} \ .
\end{cases}\end{split}\]