3. Inertia#

Inertia deals with mass and mass distribution of systems.

But what is mass? Mass is a physical quantity, a property of the system, that manifests itself:

  • in gravitational attraction (being both the origin of gravitational force and the property that makes a system sensible to gravitational attraction),

  • in resistance to change of motion of a system under external actions, as it will be clear from principles and equations of motions in dynamics

In the range of application of classical mechanics mass conservation holds, as stated by Lavoisier principle: the mass of a closed system is constant.

Beside mass, three main additive dynamical quantities are introduced: momentum, angular momentum, and kinetic energy. Even though their meaning could not be clear in this chapter, it would be clear in the following chapters, in the derivation of equations of motion of mechanical systems, like point mass, system of point masses and rigid bodies,…

3.1. Point mass#

3.2. Discrete masses#

Momentum.

\[\vec{Q} := \sum_k m_k \vec{v}_k \]

Angular momentum.

\[\vec{L}_H := \int_{V_t} (P_k - H) \times m_k \vec{v}_k \]

Kinetic energy.

\[K := \sum_k \dfrac{1}{2} m_k |\vec{v}_k|^2\]

3.3. Continuous systems#

Momentum.

\[\vec{Q} := \int_{V_t} \rho \vec{v} \]

Angular momentum.

\[\vec{L}_H := \int_{V_t} (P - H) \times \rho \vec{v} \]

Kinetic energy.

\[K := \int_{V_t} \dfrac{1}{2} \rho |\vec{v}|^2\]

3.4. Rigid systems#

The expression of dynamical quantities for rigid bodies can be written in terms of the velocity \(\vec{v}_Q\) of a point \(Q\) of the rigid body and its angular velocity \(\vec{\omega}\), exploiting the law of rigid motion (1.1) to write the velocity of each points of the rigid system as functions of \(\vec{v}_Q\) and \(\vec{\omega}\),

\[\vec{v}_P = \vec{v}_Q + \vec{\omega} \times (P - Q) \ .\]

3.4.1. Discrete systems#

Momentum.

\[\begin{split}\begin{aligned} \vec{Q} = \sum_k m_k \vec{v}_k & = \sum_k m_k \left( \vec{v}_Q + \vec{\omega} \times (P_k - Q) \right) = \\ & = m \vec{v}_Q - \sum_k m_k (P_k - Q) \times \vec{\omega} = \\ & = m \vec{v}_Q + \mathbb{S}_Q \cdot \vec{\omega} \ , \end{aligned}\end{split}\]

having defined the static moment of inertia (a \(2^{nd}\)-order antisymmetric tensor)

\[\mathbb{S}_Q := \vec{s}_{P \times} := - \sum_k m_k (P_k - Q)_{\times} \ .\]

Angular momentum.

\[\begin{aligned} \vec{L}_H = \sum_k (P_k-H) \times m_k \vec{v}_k & = \underbrace{\sum_k (P_k-Q) \times m_k \vec{v}_k}_{\vec{L}_Q} + (Q - H) \times \vec{Q} \end{aligned}\]

and

\[\begin{split}\begin{aligned} \vec{L}_Q = \sum_k (P_k - Q) \times m_k \vec{v}_k & = \sum_k (P_k - Q) \times m_k \left( \vec{v}_Q - (P_k - Q) \times \vec{\omega} \right) = \\ & = \mathbb{S}_Q^T \cdot \vec{v}_Q + \mathbb{I}_Q \cdot \vec{\omega} \ , \end{aligned}\end{split}\]

having recognized the transpose of the static moment of inertia, and introduced the tensor of inertia w.r.t. reference point \(Q\)

\[\mathbb{I}_Q := - \sum_k m_k \left( P_k - Q \right)_{\times} \left( P_k - Q \right)_{\times} \ .\]

Kinetic energy.

\[\begin{split}\begin{aligned} K = \sum_k \dfrac{1}{2} m_k |\vec{v}_k|^2 & = \sum_k \dfrac{1}{2} m_k \left( \vec{v}_Q + \vec{\omega} \times (P_k - Q) \right) \cdot \left( \vec{v}_Q + \vec{\omega} \times (P_k - Q) \right) = \\ & = \sum_k \dfrac{1}{2} m_k | \vec{v}_Q |^2 + \dfrac{1}{2} \sum_k 2 m_k \vec{v}_Q \cdot \left( - (P_k - Q) \times \vec{\omega} \right) + \dfrac{1}{2} \sum_k \vec{\omega} \cdot (P_k - Q)_{\times} (P_k - Q)_\times \cdot \vec{\omega} = \\ & = \dfrac{1}{2} \left[\sum_k m_k \right] | \vec{v}_Q |^2 + \dfrac{1}{2} \vec{v}_Q \cdot \left[ - \sum_k m_k (P_k - Q)_\times \right] \cdot \vec{\omega} + \\ & + \dfrac{1}{2} \vec{\omega} \cdot \left[ \sum_k m_k (P_k - Q)_\times \right] \cdot \vec{v}_Q + \dfrac{1}{2} \vec{\omega} \cdot \left[ \sum_k m_k (P_k - Q)_{\times} (P_k - Q)_\times \right] \cdot \vec{\omega} = \\ & = \dfrac{1}{2} m |\vec{v}_Q|^2 + \dfrac{1}{2} \vec{v}_Q \cdot \mathbb{S}_Q \cdot \vec{\omega} + \dfrac{1}{2} \vec{\omega} \cdot \mathbb{S}^T \cdot \vec{v}_Q + \dfrac{1}{2} \vec{\omega} \cdot \mathbb{I}_Q \cdot \vec{\omega} = \\ & = \dfrac{1}{2} \vec{v}_Q \cdot \left[ m \vec{v}_Q + \mathbb{S}_Q \cdot \vec{\omega} \right] + \dfrac{1}{2} \vec{\omega} \cdot \left[ \mathbb{S}_Q^T \cdot \vec{v}_Q + \mathbb{I}_Q \cdot \vec{\omega} \right] = \\ & = \dfrac{1}{2} \vec{v}_Q \cdot \vec{Q} + \dfrac{1}{2} \vec{\omega} \cdot \vec{L}_Q \ . \end{aligned}\end{split}\]

having used the vector identities

\[\vec{a} \cdot \vec{b} \times \vec{c} = \vec{b} \cdot \vec{c} \times \vec{a}\]
\[\vec{a} \times \vec{b} = - \vec{b} \times \vec{a}\]

and having introduced the expression of momentum and angular momentum in the last step.

Note

The components of static moment of inertia and tensor of inertia in a material basis - following the motion of the system - are constant.

3.4.2. Continuous systems#

Momentum.

\[\begin{split}\begin{aligned} \vec{Q} = \int_{V_t} \rho \vec{v} & = \int_{V_t} \rho \left( \vec{v}_Q + \vec{\omega} \times (P - Q) \right) = \\ & = m \vec{v}_Q - \int_{V_t} \rho (P_k - Q) \times \vec{\omega} = \\ & = m \vec{v}_Q + \mathbb{S}_Q \cdot \vec{\omega} \ , \end{aligned}\end{split}\]

having defined the static moment of inertia (a \(2^{nd}\)-order antisymmetric tensor) for continuous systems,

\[\mathbb{S}_Q := \vec{s}_{P \times} := - \int_{V_t} \rho (P - Q)_{\times} \ .\]

Note

Using the definition of the center of mass \(G\),

\[G = \dfrac{1}{m} \int_{V_t} \rho P \ ,\]

the static moment of inertia can be written as

\[\mathbb{S}_Q = - \int_{V_t} \rho (P-Q)_{\times} = - m (G - Q)_{\times} \ .\]

Note

The components of static moment of inertia w.r.t. a material reference frame are constant. Using a material Carteisan reference frame the tensor reads

\[\begin{split}\begin{aligned} \mathbb{S}_{Q} & = - \int_{V_t} \rho (P - Q)_{\times} = \\ & = - \int_{V_t} \rho \left[ ( x^0 - x_Q^0 ) \hat{x}^0 + ( y^0 - y_Q^0 ) \hat{y}^0 + ( z^0 - z_Q^0 ) \hat{z}^0 \right]_\times = S_{ij} \hat{e}^0_i \hat{e}^0_j \ , \end{aligned}\end{split}\]

whose components can be collected in the antisymmetric matrix

\[\begin{split}\underline{\underline{S}}_Q = \left[ S_{Q,ij} \right] = - \int_{V_0} \rho \begin{bmatrix} 0 & -(z^0-z^0_Q) & (y^0-y^0_Q) \\ (z^0 - z_Q^0) & 0 & -(x^0-x_Q^0) \\ -(y^0-y^0_Q) & (x^0-x^0_Q) & 0 \end{bmatrix} \ ,\end{split}\]

so that the vector product between \(-\int_V \rho (P-Q)\) and a vector \(\vec{a}\) reads

\[\begin{split}\begin{aligned} - \int_{V} \rho (P-Q) \times a & = - \int_V \rho \left[ \hat{x}^0 \left( \Delta y^0 a_z - \Delta z^0 a_y \right) + \hat{y}^0 \left( \Delta z^0 a_x - \Delta x^0 a_z \right) + \hat{z}^0 \left( \Delta x^0 a_y - \Delta y^0 a_x \right) \right] \\ & = \mathbb{S} \cdot \vec{a} \ . \end{aligned}\end{split}\]

Angular momentum.

\[\begin{aligned} \vec{L}_H = \int_{V_t} (P-H) \times \rho \vec{v} & = \underbrace{\int_{V_t}(P-Q) \times \rho \vec{v}_k}_{\vec{L}_Q} + (Q - H) \times \vec{Q} \end{aligned}\]

and

\[\begin{split}\begin{aligned} \vec{L}_Q = \int_{V_t} (P - Q) \times \rho \vec{v} & = \int_{V_t} (P - Q) \times \rho \left( \vec{v}_Q - (P - Q) \times \vec{\omega} \right) = \\ & = \mathbb{S}_Q^T \cdot \vec{v}_Q + \mathbb{I}_Q \cdot \vec{\omega} \ , \end{aligned}\end{split}\]

having recognized the transpose of the static moment of inertia, and introduced the tensor of inertia w.r.t. reference point \(Q\)

\[\begin{split}\begin{aligned} \mathbb{I}_Q & := - \int_{V_t} \rho \left( P - Q \right)_{\times} \left( P - Q \right)_{\times} = \\ & := \int_{V_t} \rho \left[ |P-Q|^2 \mathbb{I} - (P-Q) \otimes (P-Q) \right] \ , \end{aligned}\end{split}\]

having used the tensor identity

\[- \vec{a}_{\times} \cdot \vec{a}_{\times} = |\vec{a}|^2 \mathbb{I} - \vec{a} \otimes \vec{a}\]

Note

The components of tensor of inertia w.r.t. a material reference frame are constant. Using a material Carteisan reference frame the tensor reads

\[\begin{split}\begin{aligned} \mathbb{I}_{Q} & = - \int_{V_t} \rho (P - Q)_{\times} (P-Q)_{\times} = \\ & = - \int_{V_t} \rho \left[ |P-Q|^2 \mathbb{I} - (P-Q) \otimes (P-Q) \right] = \\ & = I^0_{Q,ij} \hat{e}^0_i \hat{e}^0_j \ , \end{aligned}\end{split}\]

whose components can be collected in the symmetric matrix

\[\begin{split}\underline{\underline{I}}^0_Q = \left[ I^0_{Q,ij} \right] = \int_{V_0} \rho \begin{bmatrix} \Delta y_0^2 + \Delta z_0^2 & -\Delta x_0 \Delta y_0 & -\Delta x_0 \Delta z_0 \\ -\Delta y_0 \Delta x_0 & \Delta x_0^2 + \Delta y_0^2 & -\Delta y_0 \Delta z_0 \\ -\Delta z_0 \Delta x_0 & - \Delta z_0 \Delta y_0 & \Delta x_0^2 + \Delta z_0^2 \end{bmatrix} \ ,\end{split}\]

being \(\Delta x^0 := x^0_P - x_Q^0\).

3.4.3. Properties of inertia tensors of rigid bodies#

3.4.3.1. Static inertia#

Center of mass, \(G\). Center of mass of of a rigid body is defined as the point \(G\) for which \(\mathbb{S}_G \equiv \mathbb{0}\), whose coordinates are given by

\[G = \dfrac{1}{m} \int_{V_t} \rho \, P\]

Anti-symmetric. From the definition of the static inertia tensor

\[\mathbb{S}_Q \cdot \vec{a} = \int_{V_t} \rho (P-Q) \times \vec{a} = - \vec{a} \times \int_{V_t} \rho (P-Q) = - \vec{a} \cdot \mathbb{S}_Q = - \mathbb{S}^T \cdot \vec{a} \ .\]

Transport.

\[\begin{split}\begin{aligned} \mathbb{S}_Q & = - \int_{V_t} \rho (P - Q)_{\times} = \\ & = - \int_{V_t} \rho (P - R)_{\times} - \int_{V_t} \rho (R - Q)_{\times} = \\ & = \mathbb{S}_R - m (R-Q)_{\times} \ , \end{aligned}\end{split}\]

or w.r.t. the center of mass \(G\),

\[\mathbb{S}_Q = \mathbb{S}_G - m (G-Q)_{\times} \ .\]

3.4.3.2. Tensor of inertia#

Symmetric (semi)-definite positive. Inertia tensor is symmetric

\[\vec{v} \cdot \mathbb{I}_Q \cdot \vec{w} = \vec{v} \cdot \int_{V_t} \rho \left[ |\Delta \vec{r}|^2 \mathbb{I} - \Delta \vec{r} \otimes \Delta \vec{r} \right] \cdot \vec{w} = \vec{w} \cdot \mathbb{I}_Q \cdot \vec{v} \ .\]

for all \(\forall \vec{v}, \vec{w}\), and semi-definite positive

\[\begin{split}\begin{aligned} \vec{v} \cdot \mathbb{I}_Q \cdot \vec{v} & = - \vec{v} \cdot \int_{V_t} \rho \Delta \vec{r}_{\times} \Delta \vec{r}_{\times} \cdot \vec{v} = \\ & = - \int_{V_t} \rho \vec{v} \cdot \Delta \vec{r}_{\times} \Delta \vec{r}_{\times} \cdot \vec{v} = \\ & = - \int_{V_t} \rho \vec{v} \cdot \left[ \Delta \vec{r} \times \left( \Delta \vec{r} \times \cdot \vec{v} \right) \right] = \\ & = - \int_{V_t} \rho \left( \Delta \vec{r} \times \vec{v} \right) \cdot \left( \vec{v} \times \Delta \vec{r} \right) = \\ & = \int_{V_t} \rho \left( \Delta \vec{r} \times \vec{v} \right) \cdot \left( \Delta \vec{r} \times \vec{v} \right) = \\ & = \int_{V_t} \rho | \Delta \vec{r} \times \vec{v} |^2 \ge 0 \\ \end{aligned}\end{split}\]

Principal axes of inertia. As the tensor of inertia is symmetric and definite positive, a set of orthogonal vectors \(\hat{E}^0_i\) so that it can be written in diagonal form,

\[\mathbb{I}_Q = I^0_{XX} \, \hat{E}^0_X \otimes \hat{E}^0_X + I^0_{YY} \, \hat{E}^0_Y \otimes \hat{E}^0_Y + I^0_{ZZ} \, \hat{E}^0_Z \otimes \hat{E}^0_Z \ ,\]

with \(I_{ii}^0 \ge 0\) (no sum).

Theorem 3.1 (Transport - Huygens’ theorem.)

\[\begin{split}\begin{aligned} \mathbb{I}_Q & = - \int_{V_t} \rho (P - Q)_{\times} (P-Q)_{\times} = \\ & = - \int_{V_t} \rho (P - R)_{\times} (P - R)_{\times} - \int_{V_t} \rho (P - R)_{\times} (R - Q)_{\times} \\ & \quad - \int_{V_t} \rho (R - Q)_{\times} (P - R)_{\times} - \int_{V_t} \rho (R - Q)_{\times} (R - Q)_{\times} = \\ & = \mathbb{I}_R + \mathbb{S}_R \cdot (R-Q)_{\times} + (R-Q)_{\times} \cdot \mathbb{S}_R - m (R - Q)_{\times} (R - Q)_{\times} \end{aligned}\end{split}\]

or w.r.t. the center of mass \(G\),

\[ \mathbb{I}_Q = \mathbb{I}_G - m (Q-G)_\times (Q-G)_\times \ .\]

3.4.4. Time derivatives of dynamical quantities#

Time derivatives of dynamical quantities are easily evaluated using a Cartesian material reference frame.

Momentum.

\[\begin{split}\begin{aligned} \dfrac{d}{dt} \vec{Q} & = \dfrac{d}{dt} \left( m \vec{v}_Q + \mathbb{S}_Q \cdot \vec{\omega} \right) = \\ & = m \dot{\vec{v}}_Q + \dfrac{d}{dt} \left( \vec{E}^0_i S^0_{ij} \omega^0_j \right) = \\ & = m \dot{\vec{v}}_Q + \dfrac{d\vec{E}^0_i }{dt} S^0_{ij} \omega^0_j + \vec{E}^0_i S^0_{ij} \dfrac{d} \omega^0_j{dt} = \\ & = m \dot{\vec{v}}_Q + \vec{\omega} \times \vec{E}^0_i S^0_{ij} \omega^0_j + \vec{E}^0_i S^0_{ij} \dfrac{d}{dt}\omega^0_j = \\ & = m \dot{\vec{v}}_Q + \vec{\omega} \times \left( \mathbb{S}_Q \cdot \vec{\omega} \right) + \mathbb{S}_Q \cdot \dot{\vec{\omega}} \ . \end{aligned}\end{split}\]
\[\begin{split}\begin{aligned} \dfrac{d}{dt} \vec{\omega} & = \dfrac{d}{dt} \left( \hat{E}^0_i \omega_i^0 \right) = \\ & = \vec{\omega} \times \hat{E}^0_i \omega_i^0 + \hat{E}^0_i \dfrac{d \omega^0_i}{dt} = \\ & = \underbrace{\vec{\omega} \times \vec{\omega}}_{=\vec{0}} + \hat{E}^0_i \dfrac{d \omega^0_i}{dt} \ . \end{aligned}\end{split}\]
\[\begin{split}\begin{aligned} \dfrac{d}{dt} \vec{v} & = \dfrac{d}{dt} \left( \hat{E}^0_i v_i^0 \right) = \\ & = \vec{\omega} \times \hat{E}^0_i v_i^0 + \hat{E}^0_i \dfrac{d v^0_i}{dt} = \\ & = \vec{\omega} \times \vec{v} + \dfrac{{}^0 d}{dt} \vec{v} \\ \end{aligned}\end{split}\]

Angular momentum.

\[\begin{aligned} \dfrac{d}{dt} \vec{L}_H & = \dfrac{d}{dt} \left( (Q-H) \times \vec{Q} + \vec{L}_Q \right) \ , \end{aligned}\]

and

\[\dfrac{d}{dt} \left( (Q-H) \times \vec{Q} \right) = ( \vec{v}_Q - \dot{\vec{x}}_H ) \times \vec{Q} + ( Q - H ) \times \dot{\vec{Q}}\]

and

\[\begin{split}\begin{aligned} \dfrac{d \vec{L}_Q}{dt} & = \dfrac{d}{dt} \left( \mathbb{S}^T_Q \cdot \vec{v}_Q + \mathbb{I}_Q \cdot \vec{\omega} \right) = \\ & = \dfrac{d}{dt} \left[ \hat{E}_i^0 \left( S^0_{ji} v^0_{Q,j} + I^0_{ij} \omega^0_j \right) \right] = \\ & = \vec{\omega} \times \hat{E}_i^0 \left( S^0_{ji} v^0_{Q,j} + I^0_{ij} \omega^0_j \right) + \hat{E}^0_i \left( S_{ji}^0 \dot{v}^0_{Q,j} + I^0_{ij} \dot{\omega}^0_j \right) = \\ & = \vec{\omega} \times ( \mathbb{S}_Q^T \cdot \vec{v}_Q + \mathbb{I}_Q \cdot \vec{\omega} ) + \left( \mathbb{S}_Q^T \cdot \dfrac{{}^0 d}{dt} \vec{v}_Q + \mathbb{I} \cdot \dot{\vec{\omega}} \right) = \\ & = \vec{\omega} \times ( \mathbb{S}_Q^T \cdot \vec{v}_Q + \mathbb{I}_Q \cdot \vec{\omega} ) + \left( \mathbb{S}_Q^T \cdot \left( \dot{v}_Q - \vec{\omega} \times \vec{v}_Q \right) + \mathbb{I} \cdot \dot{\vec{\omega}} \right) \\ & = \left( \mathbb{S}_Q^T \cdot \left( \dot{v}_Q - \vec{\omega} \times \vec{v}_Q \right) + \mathbb{I} \cdot \dot{\vec{\omega}} \right) + \vec{\omega} \times ( \mathbb{S}_Q^T \cdot \vec{v}_Q + \mathbb{I}_Q \cdot \vec{\omega} ) \end{aligned}\end{split}\]

3.4.4.1. Dynamical quantities and time derivatives with \(G\) as reference point#

\[\begin{split} \begin{cases} \vec{Q} = m \vec{v}_G \\ \vec{L}_G = \mathbb{I}_G \cdot \vec{\omega} \end{cases} \qquad , \qquad \begin{cases} \dot{\vec{Q}} = m \dot{\vec{v}}_G \\ \dot{\vec{L}}_G = \mathbb{I}_G \cdot \dot{\vec{\omega}} + \vec{\omega} \times \mathbb{I}_G \cdot \vec{\omega} \end{cases}\end{split}\]