1.5.2. Rotation parametrization: axis and angle#
Rotation tensor
Angular velocity
Linearization
1.5.2.1. Rotation tensor#
The expression of the rotation tensor \(\mathbb{R}\) that rotates vector \(\vec{v}^0\) into \(\vec{v}\),
comes from little geometry and vector algebra. The rotation of an angle \(\theta\) around the axis determined by the unit vector \(\hat{n}\) reads
with
\(v^0_{\parallel} = \hat{n} \cdot \vec{v}^0\),
\(\hat{n} \times \vec{v}^0 = \hat{y} v^0_{\perp}\), and thus \(\hat{y} = \frac{\hat{n} \times \vec{v}^0}{v^0_{\perp}}\),
\(\hat{x} = \hat{y} \times \hat{n}\), and thus \(v^0_{\perp} \hat{x} = v^0_{\perp} \frac{(\hat{n} \times \vec{v}^0)}{v^0_{\perp}} \times \hat{n} = - \hat{n} \times \left( \hat{n} \times \vec{v}^0 \right) = - \hat{n}_{\times} \hat{n}_{\times} \cdot \vec{v}^0\), where the dot product is meant between the \(\hat{n}_\times\) tensors representing vector products.
Exploiting these expressions, the relation (1.14) between the vectors \(\vec{v}\), \(\vec{v}^0\) can be written in implicit tensor form. Different equivalent tensor expressions follows from the identity \(\hat{v}_\times \hat{v}_\times = \vec{v} \otimes \vec{v} - |\vec{v}|^2 \mathbb{I} \),
and thus
Proof of relation \(\ \hat{v}_\times \hat{v}_{\times} = \vec{v} \otimes \vec{v} - |\vec{v}|^2 \mathbb{I} \)
1.5.2.2. Angular velocity#
Proof
Using the expression of the angular velocity using unitary quaternion parametrization,
and
with
having used \(\cos \theta = \cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2} = 1 - 2 \sin^2 \frac{\theta}{2}\), to transform \(\sin^2 \frac{\theta}{2}\), and \(\hat{n} \times \hat{n} = \vec{0}\).