1.6. Relative Kinematics#

Relative kinematics is discussed here using two Cartesian reference frames.

\[P - O_0 = x^{0i}_{ P/O_0} \hat{e}^0_i\]
\[O_1 - O_0 = x^{0i}_{O_1/O_0} \hat{e}^0_i\]
\[P - O_1 = x^{1i}_{ P/O_1} \hat{e}^1_i\]
\[\begin{split}\begin{aligned} \hat{e}^1_i = \hat{e}^{1}_i \cdot \hat{e}^0_k \, \hat{e}^0_k & = \hat{e}^{1}_j \cdot \hat{e}^0_k \, \hat{e}^0_k \otimes \hat{e}^0_j \cdot \hat{e}^0_i = \\ & = R^{0\rightarrow 1}_{kj} \hat{e}^0_k \otimes \hat{e}^0_j \cdot \hat{e}^0_i = \mathbb{R}^{0\rightarrow 1} \cdot \hat{e}^0_i \ . \end{aligned}\end{split}\]

1.6.1. Points#

Position. Given two reference frames \(Ox^i\), \(O' x^{i'}\), for the position of a point \(P\) reads

(1.7)#\[(P - O_0) = ( O_1 - O_0 ) + ( P - O_1) \ ,\]
\[x^0_{P/O_0,i} \hat{e}^0_i = x^0_{O_1/O_0,i} \hat{e}^0_i + x^1_{P/O_1,k} \hat{e}^1_k \ ,\]

i.e. the position vector \(P-O\) of the point \(P\) w.r.t. point \(O\) - origin of the reference frame \(O x^i\) - is the sum of the position vector \(P-O'\) of the point \(P\) w.r.t. to the point \(O'\) - origin of the reference frame \(O' x^{'i}\) - and the position vector \(O' - O\), of the origin \(O'\) w.r.t. to \(O\).

Velocity. Time derivative of relative position relation (1.7) w.r.t. to reference frame \(0\) is performed keeping \(\hat{e}^0_i\) constant.

\[\begin{split}\begin{aligned} \dfrac{{}^0 d}{dt} (P-O_0) & = \dfrac{{}^0 d}{dt} \left[ (O_1 - O_0) + (P - O_1) \right] = \\ & = \dfrac{{}^0 d}{dt} \left( x^0_{O_1/O_0,i} \hat{e}^0_i \right) + \dfrac{{}^0 d}{dt} \left( x^1_{P/O_1,k} \hat{e}^1_k \right) = \\ & = \dfrac{{}^0 d}{dt} x^0_{O_1/O_0,i} \, \hat{e}^0_i + \dfrac{{}^0 d}{dt} x^1_{P/O_1,k} \, \hat{e}^1_k + x^1_{P/O_1,k} \, \dfrac{{}^0 d}{dt} \hat{e}^1_k = \\ & = \vec{v}^0_{O_1/O_0} + \vec{v}^1_{P/O_1} + \vec{\omega}_{1/0} \times \hat{e}^1_k x^1_{P/O_1,k} = \\ & = \vec{v}^0_{O_1/O_0} + \vec{v}^1_{P/O_1} + \vec{\omega}_{1/0} \times ( P - O_1 ) \ , \end{aligned}\end{split}\]

so that

(1.8)#\[ \vec{v}^0_{P/O} = \vec{v}^0_{O_1/O_0} + \vec{v}^1_{P/O_1} + \vec{\omega}_{1/0} \times ( P - O_1 ) \ .\]

Acceleration. Time derivative of relative velocity relation (1.8) w.r.t. reference frame \(0\) reads

\[\begin{split}\begin{aligned} \dfrac{{}^0 d}{dt} \vec{v}^0_{P/O_0} & = \dfrac{{}^0 d}{dt} \left[ \vec{v}^0_{O_1/O_0} + \vec{v}^1_{P/O_1} + \vec{\omega}_{1/0} \times ( P - O_1 ) \right] = \\ & = \dots \\ & = \vec{a}^0_{O_1/O_0} + \vec{a}^{1}_{P/O_1} + 2 \vec{\omega}_{1/0} \times \vec{v}^1_{P/O_1} + \vec{\alpha}_{1/0} \times (P - O_1) + \vec{\omega}_{1/0} \times [ \, \vec{\omega}_{1/0} \times (P - O_1) \, ] \end{aligned}\end{split}\]

so that

(1.9)#\[ \vec{a}^0_{P/O_0} = \vec{a}^0_{O_1/O_0} + \vec{a}^{1}_{P/O_1} + \underbrace{\vec{\alpha}_{1/0} \times (P - O_1)}_{\text{tangential}} + \underbrace{2 \vec{\omega}_{1/0} \times \vec{v}^1_{P/O_1}}_{\text{Coriolis}} + \underbrace{\vec{\omega}_{1/0} \times [ \, \vec{\omega}_{1/0} \times (P - O_1) \, ]}_{\text{centripetal}} \ . \]

where:

  • the “tangential component” is orthogonal to the instantaneous angular acceleration and radius,

  • the “centripetal component” is orthogonal w.r.t. the instantaneous angular velocity

todo tangent to what, centripetal w.r.t. what? state it clearly, otherwise delete this

1.6.2. Rigid bodies#

Orientation.

Angular velocity.

Angular acceleration.