4.3. Equations of motion of a point mass#
Dynamic quantities.
\[\begin{split}\begin{aligned}
\vec{Q}_P & := m_P \vec{v}_P \\
\vec{L}_{P,H} & := (\vec{r}_P - \vec{r}_H) \times \vec{Q} = m_P (\vec{r}_P - \vec{r}_H) \times \vec{v}_P \\
K & := \frac{1}{2} m_P \vec{v}_P \cdot \vec{v}_P = \frac{1}{2} m_P |\vec{v}_P|^2
\end{aligned}\end{split}\]
Momentum balance equation. The balance equation of momentum of a point \(P\) with mass \(m\), \(\vec{Q}_P = m \vec{v}_P\) readily follows the second principle of dynamics,
\[\dot{\vec{Q}}_P = \vec{R}^e_P\]
Angular momentum balance equation. Time derivative of the angular momentum is evaluated with the rule of derivative of product,
\[\begin{split}\begin{aligned}
\dot{\vec{L}}_{P,H} & = \dfrac{d}{dt} \left[ m_P (\vec{r}_P - \vec{r}_H) \times \vec{v}_P \right] = \\
& = m \left[ ( \dot{\vec{r}}_P - \dot{\vec{r}}_H ) \times \vec{v}_P + m_P (\vec{r}_P - \vec{r}_H) \times \dot{\vec{v}}_P \right] = \\
& = - m_P \dot{\vec{r}}_H \times \vec{v}_P + m_P (\vec{r}_P - \vec{r}_H) \times \dot{\vec{v}}_P = \\
& = - \dot{\vec{r}}_H \times \vec{Q} + \vec{M}_H^{ext} \ .
\end{aligned}\end{split}\]
Kinetic energy blanace equation.
\[\begin{split}\begin{aligned}
\dot{K}_{P} & = \dfrac{d}{dt} \left( \frac{1}{2} m_P \vec{v}_P \cdot \vec{v}_P \right) = \\
& = m_P \dot{\vec{v}}_P \cdot \vec{v}_P = \\
& = \vec{R}^e \cdot \vec{v}_P = P^e = P^{tot} \\
\end{aligned}\end{split}\]
being the power of external actions \(P^e\) equal to the total power acting on the system, assuming there is no internal action in the point system, or at least they have zero net power.