Skip to main content
Ctrl+K
continuum mechanics - Home

Continuum Mechanics

  • 1. Kinematics
  • 2. Governing Equations
    • 2.1. Integral Balance Equations of aaa physical quantities
    • 2.2. Differential Balance Equations of aaa physical quantities
    • 2.3. Differential Balance Equations of ddd physical quantities
    • 2.4. Integral Balance Equations of ddd physical quantities
    • 2.5. Jump conditions
    • 2.6. Integral Balance Equations in reference space
  • 3. Equazioni di stato ed equazioni costitutive
  • 4. Equazioni di bilancio di altre grandezze fisiche

Solid Mechanics

  • 5. Introduction to Solid Mechanics
  • 6. Small displacement - statics
  • 7. Waves in linear elastic homogeneous isotropic media
  • 8. Modal methods for structural problems

Fluid Mechanics

  • 9. Introduction to Fluid Mechanics
  • 10. Statics
  • 11. Constitutive Equations of Fluid Mechanics
  • 12. Governing Equations of Fluid Mechanics
  • 13. Non-dimensional Equations of Fluid Mechanics
  • 14. Incompressible Fluid Mechanics
  • 15. Compressible Fluid Mechanics
  • Repository
  • Open issue
  • .md

Modal methods for structural problems

Contents

  • 8.1. No free rigid motion
    • 8.1.1. Dimension reduction
      • 8.1.1.1. Truncation and direct recovery of loads
      • 8.1.1.2. Mode acceleration and static recovery of fast modes
  • 8.2. With free rigid motion

8. Modal methods for structural problems#

\[\mathbf{M} \ddot{\mathbf{u}} + \mathbf{K} \mathbf{u} = \mathbf{f} \ .\]

8.1. No free rigid motion#

If a structure has no free rigid motion, the stiffness matrix of mechanical systems is symmetric definite positive.

Spectral decomposition of the problem.

\[\left[ s_i^2 \mathbf{M} + \mathbf{K} \right] \hat{\mathbf{u}}_i = \mathbf{0} \ ,\]

or in index and matrix form

\[\begin{split}\begin{aligned} 0 & = s_i^2 M_{jk} U_{ki} + K_{jk} U_{ki} = \\ & = \mathbf{M} \mathbf{U} \mathbf{S}^2 + \mathbf{K} \mathbf{U} \ , \end{aligned}\end{split}\]

with the diagonal matrix \(\mathbf{S}\) collecting the eigenvalues,

\[\mathbf{S} = \text{diag} \left\{ s_i \right\} \ .\]

Properties. For eigenvectors with different eigenvalues,

\[\begin{aligned} \hat{\mathbf{u}}_j^* \mathbf{M} \hat{\mathbf{u}}_i = 0 \qquad , \qquad \hat{\mathbf{u}}_j^* \mathbf{K} \hat{\mathbf{u}}_i = 0 \ . \end{aligned}\]

Nodal and modal unknowns. The nodal vector can be written as a combination of modes, being \(\mathbf{q}\) the vector of modal amplitudes,

\[\mathbf{u} = \mathbf{U} \mathbf{q} = \left[ \hat{\mathbf{u}}_1 | \dots | \hat{\mathbf{u}}_N \right] \mathbf{q} \ .\]

Laplace domain. In Laplace domain

\[\begin{split}\begin{aligned} \left[ s^2 \mathbf{U}^* \mathbf{M} \mathbf{U} + \mathbf{U}^* \mathbf{K} \mathbf{U}\right] \mathbf{q}(s) & = \mathbf{U}^* \mathbf{f}(s) \\ \text{diag}\left[ s^2 m_i + k_i \right] \mathbf{q}(s) & = \mathbf{U}^* \mathbf{f}(s) \ . \end{aligned}\end{split}\]

Modal damping Adding modal damping, with simultaneous diagonalization with mass and stiffness matrices,

\[\begin{split} \text{diag}\left[ s^2 m_i + s c_i + k_i \right] \mathbf{q}(s) & = \mathbf{U}^* \mathbf{f}(s) \\ \mathbf{q}(s) & = \text{diag}\left[ \frac{1}{m_i ( s^2 + 2 \xi_i \omega_i s + \omega^2_i )} \right]\mathbf{U}^* \mathbf{f}(s) \ . \end{split}\]

The original equation becomes

\[\left[s^2 \mathbf{M} + s \mathbf{C} + \mathbf{K} \right] \mathbf{u} = \mathbf{f} \ ,\]

with

\[\begin{split}\begin{aligned} \mathbf{M} & = \mathbf{U} \text{diag}\left\{ m_i \right\} \mathbf{U}^* \\ \mathbf{C} & = \mathbf{U} \text{diag}\left\{ c_i \right\} \mathbf{U}^* \\ \mathbf{K} & = \mathbf{U} \text{diag}\left\{ k_i \right\} \mathbf{U}^* \\ \end{aligned}\end{split}\]

and the eigenproblem reads

\[\begin{split}\begin{aligned} \mathbf{0} & = \left[ s_i^2 \mathbf{M} + s_i \mathbf{C} + \mathbf{K} \right] \hat{\mathbf{u}}_i \\ \mathbf{0} & = \mathbf{M} \mathbf{U} \mathbf{S}^2 + \mathbf{C} \mathbf{U} \mathbf{S} + \mathbf{K} \mathbf{U} \\ \end{aligned}\end{split}\]

Nodal vector. Nodal vector thus reads

\[\mathbf{u}(s) = \mathbf{U} \mathbf{q}(s) = \mathbf{U} \text{diag}\left[ \frac{1}{m_i ( s^2 + 2 \xi_i \omega_i s + \omega^2_i )} \right]\mathbf{U}^* \mathbf{f}(s) \]

and the internal forces usually derived from a manipulation of the term \(\mathbf{K} \mathbf{u}(s)\),

\[\mathbf{K} \mathbf{u}(s) = \mathbf{K} \mathbf{U} \text{diag}\left[ \frac{1}{m_i ( s^2 + 2 \xi_i \omega_i s + \omega^2_i )} \right]\mathbf{U}^* \mathbf{f}(s) \ .\]

8.1.1. Dimension reduction#

Modal unknowns can usually partitioned in slow (dynamical, resolved) and fast modes (with natural frequencies well above the frequency content of the forcing, and the dynamics of the system; can be treated as static modes),

\[\begin{split}\mathbf{q} = \begin{bmatrix} \mathbf{q}_s \\ \mathbf{q}_f \end{bmatrix} \ ,\end{split}\]

and the sum of their contributions give the nodal unknown,

\[\begin{split}\mathbf{u} = \mathbf{U} \mathbf{q} = \begin{bmatrix} \mathbf{U}_s & \mathbf{U}_f \end{bmatrix} \begin{bmatrix} \mathbf{q}_s \\ \mathbf{q}_f \end{bmatrix} = \mathbf{U}_s \mathbf{q}_s + \mathbf{U}_f \mathbf{q}_f \ .\end{split}\]

8.1.1.1. Truncation and direct recovery of loads#

\[\begin{aligned} \mathbf{u} & = \mathbf{U}_s \text{diag}\left[ \frac{1}{m_s ( s^2 + 2 \xi_s \omega_s s + \omega^2_s )} \right] \mathbf{U}_s^* \mathbf{f} + \mathbf{U}_f \text{diag}\left[ \frac{1}{m_f ( s^2 + 2 \xi_f \omega_f s + \omega^2_f )} \right] \mathbf{U}_f^* \mathbf{f} \end{aligned}\]

8.1.1.2. Mode acceleration and static recovery of fast modes#

Static approximation of fast modes gives

\[\begin{split}\begin{aligned} \mathbf{u} & = \mathbf{U}_s \text{diag}\left[ \frac{1}{m_s ( s^2 + 2 \xi_s \omega_s s + \omega^2_s )} \right] \mathbf{U}_s^* \mathbf{f} + \mathbf{U}_f \text{diag}\left[ \frac{1}{m_f ( s^2 + 2 \xi_f \omega_f s + \omega^2_f )} \right] \mathbf{U}_f^* \mathbf{f} = \\ & = \mathbf{U}_s \text{diag}\left[ \frac{1}{m_s ( s^2 + 2 \xi_s \omega_s s + \omega^2_s )} \right] \mathbf{U}_s^* \mathbf{f} + \mathbf{U}_f \text{diag}\left[ \frac{1}{m_f \omega^2_f } \right] \mathbf{U}_f^* \mathbf{f} \end{aligned}\end{split}\]

and adding and subtracting the static response of the slow modes,

\[\begin{split}\begin{aligned} \mathbf{u} & = \mathbf{U}_s \text{diag}\left[ \frac{1}{m_s ( s^2 + 2 \xi_s \omega_s s + \omega^2_s )} \right] \mathbf{U}_s^* \mathbf{f} - \mathbf{U}_s \text{diag}\left[ \frac{1}{m_s \omega^2_s } \right] \mathbf{U}_s^* \mathbf{f} + \\ & + \mathbf{U}_s \text{diag}\left[ \frac{1}{m_s \omega^2_s } \right] \mathbf{U}_s^* \mathbf{f} + \mathbf{U}_f \text{diag}\left[ \frac{1}{m_f \omega^2_f } \right] \mathbf{U}_f^* \mathbf{f} = \\ & = \mathbf{U}_s \text{diag}\left[ \frac{-s^2 -2 \xi_s \omega_s s}{m_s \omega^2_s ( s^2 + 2 \xi_s \omega_s s + \omega^2_s )} \right] \mathbf{U}_s^* \mathbf{f} - \mathbf{U} \text{diag}\left[ \frac{1}{m_i \omega^2_i } \right] \mathbf{U}^* \mathbf{f} + \\ & = \mathbf{U}_s \text{diag}\left[ \frac{-s^2 -2 \xi_s \omega_s s}{m_s \omega^2_s ( s^2 + 2 \xi_s \omega_s s + \omega^2_s )} \right] \mathbf{U}_s^* \mathbf{f} - \mathbf{K}^{-1} \mathbf{f} \\ & = ... \\ & = - \mathbf{U}_s \left( \mathbf{U}_s^ \mathbf{K} \mathbf{U}_s \right)^{-1} \left( \right) \text{diag} \left[ \frac{1}{m_s (s^2 + 2 \xi_s \omega_s s + \omega^2_s) } \right] \mathbf{U}_s^* \mathbf{f} - \mathbf{K}^{-1} \mathbf{f} \ . \end{aligned}\end{split}\]
\[\begin{split}\begin{aligned} & \mathbf{U}_s \text{diag}\left[ \frac{-s^2 -2 \xi_s \omega_s s}{m_s \omega^2_s ( s^2 + 2 \xi_s \omega_s s + \omega^2_s )} \right] \mathbf{U}_s^* \mathbf{f} = \\ & = \mathbf{U}_s \text{diag}\left[ \frac{1}{k_s} \right] \text{diag}\left[ m_s ( s^2 + 2 \xi_s \omega_s s ) \right]\text{diag}\left[ \frac{1}{m_s ( s^2 + 2 \xi_s \omega_s s + \omega^2_s) } \right] \mathbf{U}_s^* \mathbf{f} = \\ \end{aligned}\end{split}\]

…todo…

8.2. With free rigid motion#

Free rigid degrees of freedom are associated with vectors of the kernel of the stiffness matrix. The stiffness matrix is singular…

previous

7. Waves in linear elastic homogeneous isotropic media

next

9. Introduction to Fluid Mechanics

Contents
  • 8.1. No free rigid motion
    • 8.1.1. Dimension reduction
      • 8.1.1.1. Truncation and direct recovery of loads
      • 8.1.1.2. Mode acceleration and static recovery of fast modes
  • 8.2. With free rigid motion

By basics

© Copyright 2022.