2.6. Integral Balance Equations in reference space#

2.6.1. Mass#

Integal balance for a material volume Vt reads

0=ddtVtρ(r,t)dV==ddtV0ρ(r(r0,t),t)J(r0,t)dV0==ddtV0ρ0(r0,t)J(r0,t)dV0==V0DDt(ρ0(r0,t)J(r0,t))dV0 .

Since the domain V0 is arbitrary, with some abuse of notation to indicate the density field as ρ, hidihg the dependence on the independet fvariables ρ0(r0,t), the differential balance in reference space follows

DDt(ρJ)=0

or

ρJ=ρ0 ,

i.e. the product ρJ equals the initial density field ρ0, assuming that the determinant of the transformation is J0=1, in the reference configuration.

2.6.2. Momentum#

Integral balance for a material volume Vt reads

ddtVtρvdV=Vtρg+Vtn^TdSddtV0ρJvdV0=V0ρJg+Vtn^0(JFTT)dS0ddtV0ρ0vdV0=V0ρ0g+V0n^0ΣndS0V0ρ0DDtvdV0=V0ρ0g+V00ΣndS0

Since the domain V0 is arbitrary, the differential balance in reference space follows

ρ0DvDt=ρ0g+0Σn
Nanson’s formula
dr=dr0rr0=dr00r=dr0F
dV=JdV0drn^dS=Jdr0n^0dS0dr0Fn^dS=Jdr0n^0dS0

must be true for all r0 arbitrary, so that

Fn^dS=Jn^0dS0

and

n^dS=JF1n^0dS0==Jn^0FTdS0
Stress tensors

Cauchy stress tensor.

Piola-Kirchhoff I - transpose of normal stress tensors.

Piola-Kirchhoff II

2.6.3. Kinetic energy#

0=v{ρ0DvDtρ0g0Σn}==ρ0DDt|v|22ρ0vgv0Σn==ρ0DDt|v|22ρ0vg0(vΣn)+0v:Σn
vik0Σki=k0(viΣki)k0viΣki
dV=JdV0drinidS=Jdrk0nk0dS0drk0rirk0nidS=drk0Jnk0dS0
rirk0nidS=Jnk0dS0rk0rjrirk0=δijnidS=Jrk0rjnk0dS0njdS=Jrk0rjnk0dS0
F=e^k0e^i0rirk0
F1=e^j0e^k0rk0rj
F1F=(e^j0e^k0rk0rj)(e^l0e^i0rirl0)=e^j0e^i0rirj=e^j0e^i0δijFF1=(e^l0e^i0rirl0)(e^j0e^k0rk0rj)=e^l0e^k0rkrl=e^l0e^k0δlk
rk0ririrl0=δkl
Σ:=ΣnF1=JFTTF1
Σn=ΣF
Σik=Σn,ij(F1)jk=Σn,ijrk0rj
Σn,ij=Σikxjxk0
0v:Σn=DDtF:Σn==vjxi0Σn,ij==vjxi0Σikxjxk0==Σik12(vjxi0xjxk0+vjxk0xjxi0)

if Σ is symmetric, Σik=Σki, or with tensor notation

0v:Σn=DDtF:Σn==0v:(ΣF)==Σ:12(DFDtFT+FDFTDt)==Σ:DDtE ,

having recognized the time derivative (1.6) of the Green-Lagrange tensor (1.5).

Integral of the volume stress in the reference space can be recast as the volume in the physical space

V00v:ΣndV0=V0Σ:DEDtdV0
Σn,ik=Jxi0xkTjk
V00v:ΣndV0=V0vkxi0Σn,ikdV0==V0vkxi0(xi0xjTkjJ)dV0dV==VvkxjTkjdV==V12(vkxj+vjxk)TkjdV==VDjkTkjdV==VD:TdV .

2.6.3.1. Variational principles#

Using an arbitrary test function w(r0),

0=w{ρ0DvDtρ0g0Σn}

and using rule of product

wiΣn,jixj0=xj0(wiΣn,ji)wixj0Σn,ji=

and the second term can be transformed using the relation bewteen normal stress and second Piola-Kirchhoff tensor

wixj0Σn,ji=wixj0Σjkxixk0=Σjk12[xixk0wixj0+xixj0wixk0]=ΣjkWij(w) ,

having defined the tensor

W(w):=12[0wFT+F0Tw] ,

with the evident analogy with the time derivative of Green-Lagrange strain tensor, namely

ϵ=W(v) ,

being v the velocity field. Integrating on the domain V0 and using divergence theorem, the problem is written in its weak form

V0{ρ0wDvDt+W(w):Σ}=V0ρ0wg+V0n^0Σnw ,

with the proper boundary conditions and the corresponding conditions on the test function w. As an example, if the boundary is composed of two different regions, SD,0SN,0=V0, SDSN= where either position (called SD from Dirichlet boundary) and stress (called SN from Neumann boundary) are prescribed

r=rb,w=0(on SD,0 Dirichlet - essential - boundary)n^0Σn=t0,n^0,(on SN,0 Neumann - natural - boundary)

the weak form of the equation reads

V0{ρ0wDvDt+W(w):Σ}=V0ρ0wg+Sn,0n^0tn^0

2.6.4. Total energy#

Using Nanson’s relation n^dS=n^0(JFT)dS0,

ddtVtρetdV=VtρgvdV+Vttn^vdSVtn^q+VtρrdV==VtρgvdV+Vtn^TvdSVtn^qdS+VtρrdV=V0ρ0gvdV0+V0n^0(JFTT)vdS0V0n^0(JFTq)dS0+V0ρ0rdV0 .

and the differential form reads

ρ0DetDt=ρ0gv+0(JFTTv)0(JFTq)+ρ0r .

or

ρ0DetDt=ρ0gv+0(Σnv)0q0+ρ0r .

and dividing by J and using the relation (see below) 0(JFTa)=Ja,

ρDetDt=ρgv+(Tv)q+ρr .

Comparison with equation in physical space (dividing by J) suggests the identity

1J0(JFTa)=a ,

and thus

0(JFT)=0 ,

since

0(JFTa)=0(JFT)a+JFT:0a=0(JFT)a+Ja

Proof.

J=|rkri0|=εi1,i2,i3ri1r10ri2r20ri3r30
(FT)ij=ri0rj
{0(JFT)}j=ri0(εi1,i2,i3ri1r10ri2r20ri3r30ri0rj)==εi1,i2,i3ri0(ri1r10)ri2r20ri3r30ri0rj+εi1,i2,i3ri1r10ri0(ri2r20)ri3r30ri0rj++εi1,i2,i3ri1r10ri2r20ri0(ri3r30)ri0rj+εi1,i2,i3ri1r10ri2r20ri3r30ri0(ri0rj)==εi1,i2,i3ri0rjri0=rj(ri1r10)ri2r20ri3r30+εi1,i2,i3ri1r10ri0rjri0=rj(ri2r20)ri3r30++εi1,i2,i3ri1r10ri2r20ri0rjri0=rj(ri3r30)+εi1,i2,i3ri1r10ri2r20ri3r30rj(ri0ri0)=3==0 ,

since

rj(rikrk0)=rk0(rikrj)=rk0δikj=0 .

Thus

1Jri0(Jri0rjaj)=1Jri0(Jri0rj)aj+1JJri0rjajri0=ajrj=a .

2.6.5. Internal energy#

ddtVtρedV=VtT:vdVVtn^qdS+VtρrdV=ddtV0ρ0edV0=V0JT:vdV0V0n^0(JFTq)dS0+V0ρ0rdV0=

and the differential form reads

ρ0DeDt=Σn:0v0q0+ρ0r .

todo pay attention at the definition - choose one and keep using it! - of the product A:B, in components

A:B=AijBijor=AijBji