Statistical Physics - Statistics Miscellanea#

Information content and Entropy

Given a discrete random variable \(X\) with probability mass function \(p_X(x)\), the self-information (todo what about mutual information of random variables?) is defined as the opposite of the logaritm of the mass function \(p_X(x)\),

\[I_X(x) := - \ln \left( p_X(x) \right) \ .\]

Information content of indenpendent random variables is additive. Since \(p_{X,Y}(x,y) = p_X(x) p_Y(y)\),

\[I_{X,Y}(x,y) = - \ln \left( p_{X,Y}(x,y) \right) = -\ln \left( p_X(x) p_Y(y) \right) = - \ln p_X(x) - \ln p_Y(y) \ .\]

Shannon entropy. Shannon entropy of a discrete random variable \(X\) is defined as the expected value of the information content,

\[H(X) := \mathbb{E}[ I_X(X)] = \sum p_X(x) I_X(x) = - \sum p_X \ln p_X(x) \ .\]

Gibbs entropy. Gibbs entropy was defined by J.W.Gibbs in 1878,

\[S = - k_B \sum_i p_i \ln p_i \ .\]

Additivity holds for independent random variables.

Boltzmann entropy. Boltmann entropy holds for uniform distributions over \(\Omega\) possible states, \(p_i = \frac{1}{\Omega}\). Gibbs’ entropy of this uniform distribution becomes

\[S = - k_B \Omega \frac{1}{\Omega} \ln \frac{1}{\Omega} = k_B \ln \Omega \ .\]

Entropy in Quantum Mechanics. todo

Boltzmann distribution

Given a set of discrete states with probability \(p_i\), and the average measure as “macroscopic quantity” \(E = \sum_i p_i E_i\), Boltzann distribution maximizes the entropy (todo Link to min info, max uncertainty)

\[S = - k_B \sum_i p_i \ln p_i \ .\]

The distribution follows from the constrained optimization

\[\widetilde{S} = S - \alpha \left( \sum_i p_i -1 \right) - \beta \left( \sum_i p_i E_i - E \right)\]
\[\begin{split}\begin{aligned} 0 & = \partial_{\alpha} \widetilde{S} = - \sum_i p_i - 1 \\ 0 & = \partial_{\beta} \widetilde{S} = - \sum_i p_i E_i - E \\ 0 & = \partial_{p_k} \widetilde{S} = -k_B \left( \ln p_k + 1 \right) - \alpha - \beta E_k \\ \end{aligned}\end{split}\]

and thus

\[p_k = e^{- 1 - \frac{\alpha}{k_B} - \frac{\beta}{k_B} E_k} = e^{-\left( 1 + \frac{\alpha}{k_B} \right)} e^{- \frac{\beta}{k_B} E_k} = C e^{-\frac{\beta}{k_B} E_k} \ ,\]

and the normalization constant \(C\) is determined by normalization condition

\[1 = \sum_k p_k = C \sum_{k} e^{-\frac{\beta E_k}{k_B}}\]

The inverse \(Z = C^{-1}\) is defined as the partition function,

\[ Z = C^{-1} = \sum_k e^{-\frac{\beta E_k}{k_B}}\ ,\]

and the probability distribution becomes

\[p_k = \frac{e^{-\frac{\beta E_k}{k_B}}}{Z} = \frac{e^{-\frac{\beta E_k}{k_B}}}{ \sum_{i} e^{-\frac{\beta E_i}{k_B}}} \ .\]

Properties.

\[\frac{p_k}{p_i} = e^{-\frac{\beta}{k_B}(E_k - E_i)} \ .\]
Thermodynamics. Comparison of statistics and classical thermodynamics

First principle of classical thermodynamics (for a monocomponent gas with no electric charge,…) reads

\[T \, dS = d E + P \, dV\]

Entropy for Boltzmann distribution reads

\[\begin{split}\begin{aligned} S & = - k_B \sum_i p_i \ln p_i = \\ & = - k_B \sum_i \left[ p_i \left( - \frac{\beta E_i}{k_B} - \ln Z \right) \right] = \\ & = \beta \langle E \rangle + k_B \ln Z \end{aligned}\end{split}\]

From classical thermodyamics, temperature \(T\) can be defined as the partial derivative of the entropy of a system w.r.t. its internal energy keeping constant all the other independent variables,

\[\begin{split}\begin{aligned} \frac{1}{T} & = \left.\left( \dfrac{\partial S}{\partial E} \right)\right|_X = \\ & = \dfrac{\partial \beta}{\partial E} E + \beta + k_B \frac{\partial \ln Z}{\partial E} = \\ & = \dfrac{\partial \beta}{\partial E} E + \beta + k_B \frac{1}{Z} \frac{\partial Z}{\partial E} = \\ & = \dfrac{\partial \beta}{\partial E} E + \beta + k_B \frac{1}{Z} \frac{\partial Z}{\partial \beta} \frac{\partial \beta}{\partial E} = \\ & = \dfrac{\partial \beta}{\partial E} E + \beta + k_B \frac{1}{Z} \left( - \sum_i \frac{E_i}{k_B} e^{-\frac{\beta E_i}{k_B}} \right) \frac{\partial \beta}{\partial E} = \\ & = \dfrac{\partial \beta}{\partial E} E + \beta - \left( \sum_i E_i p_i \right) \frac{\partial \beta}{\partial E} = \\ & = \dfrac{\partial \beta}{\partial E} E + \beta - E \frac{\partial \beta}{\partial E} = \beta \ . \end{aligned}\end{split}\]

todo

  • write the derivative above clearly in terms of composite functions

  • microscopical/statistical approach to the first principle of thermodynamics

\[d E = d \left( \sum_i p_i E_i \right) = \sum_i E_i \, d p_i + \sum_i p_i d E_i\]