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CHAPTER

ONE

SPECIAL RELATIVITY

• Electromagnetism and the need for new relativity
• Space-time, Lorentz transformations,…
• Mechanics: kinematics, dynamics,…
• Electromagnetism: Maxwell’s equations, potentials, Lorentz force, energy balance
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CHAPTER

TWO

SPECIAL RELATIVITY - NOTES

An event is determined by spatio-temporal information together, 𝑡, ⃗𝑟. Absolute nature of physics needs vector algebra
and calculus formalism

X = 𝑐 𝑡 e0 + ⃗𝑟 = 𝑐 𝑡 e0 + 𝑥1e1 + 𝑥2e2 + 𝑥3e3 = 𝑋𝛼E𝛼 ,

having used Cartesian coordiantes for the space coordinate.
Minkowski metric reads

𝑔𝛼𝛽 = E𝛼 ⋅ E𝛽 = diag{−1, 1, 1, 1}

The reciprocal basis reads E𝛼 ⋅E𝛽 = 𝛿𝛽
𝛼, E𝛼 = 𝑔𝛼𝛽E𝛽, s.t. the elementary interval between two events can be written as

𝑑X = 𝑑𝑋𝛼 E𝛼 = 𝑑𝑋𝛼 𝑔𝛼𝛽⏟
=𝑑𝑋𝛽

E𝛽 = 𝑑𝑋𝛽 E𝛽 ,

having used Cartesian coordinates,

𝑋0 = 𝑐𝑡
𝑋0 = 𝑐𝑡

𝑋1 = 𝑥
𝑋1 = −𝑥

𝑋2 = 𝑦
𝑋2 = −𝑦

𝑋3 = 𝑧
𝑋3 = −𝑧

Its “length”, or better pseudo-norm with Minkowski metric, is invariant and reads

𝑑𝑠2 = 𝑑X ⋅ 𝑑X = (𝑑𝑋𝛼E𝛼) ⋅ (𝑑𝑋𝛽E𝛽) = 𝑐2 𝑑𝑡2 − (𝑑𝑥1)2 − (𝑑𝑥2)2 − (𝑑𝑥3)2 = 𝑐2 𝑑𝑡2 − |𝑑 ⃗𝑟|2

Note: 𝑑𝑠 is invariant todo prove it. And/or add a section about the role of invariance.

For a co-moving observer, 𝑑 ⃗𝑟′ = ⃗0, and 𝑡′ is commonly indicated with 𝜏 , and its differential is invariant itself, being the
product of a constant (𝑐 is a universal constant in special relativity) and an invariant quantity.

𝑑𝑠2 = 𝑐2𝑑𝑡′2 − |𝑑 ⃗𝑟′|2 = 𝑐2𝑑𝜏2 .

Given the invariant nature of 𝑑𝑠,

𝑑𝑠2 = 𝑐2 𝑑𝜏2 = 𝑐2 𝑑𝑡2 − |𝑑 ⃗𝑟|2 = 𝑐2 𝑑𝑡2 [1 − 1
𝑐2

|𝑑 ⃗𝑟|2
𝑑𝑡2 ] = 𝑐2 𝑑𝑡2 [1 − | ⃗𝑣|2

𝑐2 ]

and thus

𝑑𝑠 = 𝑐 𝑑𝜏 = 𝛾−1(𝑣/𝑐) 𝑐 𝑑𝑡 ,

with 𝛾(𝑤) = 1√
1−𝑤2 .

7
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4-Velocity Given the parametric representation of an event in space-time as a function of its proper time, X(𝜏) or coor-
dinate 𝑠, X(𝑠) the derivative w.r.t. this parameter is defined as the 4-velocity of the event in space time. Using Cartesian
coordinates inducing constant and uniform basisE𝛼, as a function of the observer time 𝑡, 𝑐𝑡, 𝑥𝑖(𝑡), and the transformation
of coordinates 𝑡(𝜏), with differential 𝑑𝑡 = 1

𝛾 𝑑𝜏

U(𝜏) ∶= X′(𝜏) = 𝑑
𝑑𝜏 (𝑋𝛼(𝜏)E𝛼) = 𝑑𝑡

𝑑𝜏 (𝑐𝑡E0 + 𝑥𝑖(𝑡)E𝑖) = 𝛾(𝑣/𝑐) (𝑐E0 + ̇𝑥𝑖(𝑡)E𝑖) = 𝛾(𝑣/𝑐) (𝑐E0 + ⃗𝑣)

or

U(𝑠) ∶= X′(𝑠) = 𝑑𝑡
𝑑𝑠

𝑑
𝑑𝑡X(𝑡) = ⋯ = 𝛾(𝑣/𝑐) (E0 + ⃗𝑣

𝑐 ) .

Note: Using 𝑠 as the parameter, U is non-dimensional, and has pseudo-norm = 1,

U(𝑠) ⋅ U(𝑠) = 𝛾2 (1 − | ⃗𝑣|2
𝑐2 )

⏟⏟⏟⏟⏟
=𝛾−2

= 1 .

Using 𝜏 as the parameter, U has physical dimension of a velocity and pseudo-norm = 𝑐.

4-acceleration X″(𝜏) or X″(𝑠), todo

2.1 Dynamics

4-momentum

P = 𝑚U

Using Cartesian coordinates and 𝜏 as independent variable,

P = 𝑚U = 𝑚𝑑X
𝑑𝜏 = 𝑚𝛾(𝑐, ⃗𝑣) .

The spatial component is 𝛾 times the 3-dimensional momentum ⃗𝑝 = 𝑚 ⃗𝑣; the time component reads

𝑃 0 = 𝑚𝛾(𝑤)𝑐 ,

and for small ratio 𝑤 ∶= 𝑣
𝑐 it can be expanded in Taylor series around 𝑤 = 0 as

𝛾(𝑤) ∼ 𝛾(0) + 𝑤 𝛾′(0) + 1
2 𝑤2𝛾″(0) + 𝑜(𝑤2) ,

with

𝛾(𝑤)|𝑤=0 = 1√
1 − 𝑤2 ∣

𝑤=0
= 1

𝛾′(𝑤)|𝑤=0 = −1
2(1 − 𝑤2)− 3

2 (−2𝑤)∣
𝑤=0

= 𝑤(1 − 𝑤2)− 3
2 = 0

𝛾″(𝑤)|𝑤=0 = ((1 − 𝑤2)− 3
2 + 𝑤 (−3

2) (1 − 𝑤2)− 5
2 (−2𝑤))∣

𝑤=0
=

= ((1 − 𝑤2)− 3
2 + 3𝑤2(1 − 𝑤2)− 5

2 )∣
𝑤=0

= 1

8 Chapter 2. Special Relativity - Notes
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and thus

𝛾(𝑤) = 1 + 1
2𝑤2 + 𝑜(𝑤2)

and

𝛾(𝑣/𝑐) 𝑚 𝑐 ∼ 𝑚 𝑐 (1 + 𝑣2

𝑐2 ) = 1
𝑐 (𝑚𝑐2 + 1

2𝑚| ⃗𝑣|2)

Thus, recognizing energy (𝐸 = 𝛾𝑚𝑐2) and 3-momentum ( ⃗𝑝 = 𝑚3 ⃗𝑣, with 𝑚3 ∶= 𝛾𝑚), the 4-momentum can be written
as

P = 𝑚U = 𝛾𝑚 (1, ⃗𝑣
𝑐 ) =∶ 1

𝑐 (𝐸
𝑐 , ⃗𝑝)

Its pseudo-norm reads

𝑚2 = P ⋅ P = 1
𝑐4 (𝐸2 − 𝑐2| ⃗𝑝|2)

and thus the relation between 𝐸, ⃗𝑝, 𝑚 and 𝑐,

𝐸2 = 𝑚2𝑐4 + 𝑐2| ⃗𝑝|2 ,

from which, for ⃗𝑣 = ⃗0 → ⃗𝑝 = ⃗0,

𝐸2 = 𝑚2𝑐4 ,

and keeping only the solution with positive energy (todo reference to Dirac’s equation and anti-matter?)

𝐸 = 𝑚𝑐2 .

2.1.1 Lagrangian approach

Free particle.

0 = 𝑑P
𝑑𝑠 = 𝑑

𝑑𝑠 (𝑚X′(𝑠))

Weak form

0 = W(𝑠) ⋅ 𝑑
𝑑𝑠 (𝑚X′(𝑠)) =

= 𝑑
𝑑𝑠 [𝑚W(𝑠) ⋅ X′(𝑠)] − 𝑚W′(𝑠) ⋅ X′(𝑠) =

Using generalized coordinates 𝑞𝑘(𝑠), the event can be written in parametric form as X(𝑞𝑘(𝑠), 𝑠), while the velocity reads

U(𝑠) = X′(𝑠) = 𝑑
𝑑𝑠X(𝑞𝑘(𝑠), 𝑠) = 𝑞𝑘′(𝑠) 𝜕X

𝜕𝑞𝑘 (𝑞𝑘(𝑠), 𝑠)
⏟⏟⏟⏟⏟

= 𝜕X′
𝜕𝑞𝑘′

+𝜕X
𝜕𝑠 (𝑞𝑘(𝑠), 𝑠) = U(𝑞𝑘′(𝑠), 𝑞𝑘(𝑠), 𝑠)

ChoosingW = 𝜕X
𝜕𝑞𝑘 = 𝜕X′

𝜕𝑞𝑘′ in the weak form,

0 = 𝑑
𝑑𝑠 [𝑚W ⋅ X′] − 𝑚W′ ⋅ X′ =

= 𝑑
𝑑𝑠 [𝑚 𝜕X′

𝜕𝑞𝑘′ ⋅ X′] − 𝑚 𝑑
𝑑𝑠

𝜕X
𝜕𝑞𝑘 ⋅ X′ =

= 1
2 [ 𝑑

𝑑𝑠 ( 𝜕
𝜕𝑞𝑘′ (𝑚X′ ⋅ X′)) − 𝜕

𝜕𝑞𝑘 (𝑚X′ ⋅ X′)] =

2.1. Dynamics 9
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Defining

𝑓 (𝑞𝑘′(𝑠), 𝑞𝑘(𝑠), 𝑠) = −𝑚X′ (𝑞𝑘′(𝑠), 𝑞𝑘(𝑠), 𝑠) ⋅ X′ (𝑞𝑘′(𝑠), 𝑞𝑘(𝑠), 𝑠) = −𝑚 ,

multiplying by a “regular” generic function 𝑤(𝑠), neglecting factor 1
2 and integrating by parts

0 = − ∫
𝑠𝑏

𝑠=𝑠𝑎

𝑤(𝑠) [ 𝑑
𝑑𝑠

𝜕𝑓
𝜕𝑞𝑘′ − 𝜕𝑓

𝜕𝑞𝑘 ] 𝑑𝑠 =

= − [𝑤(𝑠) 𝜕𝑓
𝜕𝑞𝑘′ ]∣

𝑠𝑏

𝑠=𝑠𝑎

+ ∫
𝑠𝑏

𝑠=𝑠𝑎

[𝑤′(𝑠) 𝜕𝑓
𝜕𝑞𝑘′ + 𝜕𝑓

𝜕𝑞𝑘 ] 𝑑𝑠 =

= − [𝑤(𝑠) 𝜕𝑓
𝜕𝑞𝑘′ ]∣

𝑠𝑏

𝑠=𝑠𝑎

+ 𝛿 ∫
𝑠𝑏

𝑠=𝑠𝑎

𝑓 (𝑞𝑘′(𝑠), 𝑞𝑘(𝑠), 𝑠) 𝑑𝑠 .

Thus, provided that 𝑤(𝑠1) = 𝑤(𝑠2) = 0, equation of motion of free particle implies stationariety of functional

∫
𝑠𝑏

𝑠=𝑠𝑎

𝑓 (𝑞𝑘′(𝑠), 𝑞𝑘(𝑠), 𝑠) 𝑑𝑠 ,

i.e.

𝛿 ∫
𝑠𝑏

𝑠=𝑠𝑎

𝑓 (𝑞𝑘′(𝑠), 𝑞𝑘(𝑠), 𝑠) 𝑑𝑠 = 0

Using 𝑡 as independent parameter, 𝑑𝑠 = 𝛾−1 𝑐 𝑑𝑡, the functional can be recast as

∫
𝑡𝑏

𝑡=𝑡𝑎

−𝑚 𝑐 √1 − | ⃗𝑣|2
𝑐2 𝑑𝑡 ,

to find the (3-dimensional) Lagrangian (multiply by 𝑐 to get the right physical dimension; check if it’s required and wheter
it’s possible to make 𝑐 appear before),

ℒ = −√1 − | ⃗𝑣|2
𝑐2 𝑚 𝑐2 ,

and retrieve 3-momentum as (being ⃗𝑣 = ̇⃗𝑟)

⃗𝑝 ∶= 𝜕ℒ
𝜕 ̇⃗𝑟

=

= −𝑚𝑐2 1
2 (1 − | ⃗𝑣|2

𝑐2 )
− 1

2

(−2 ⃗𝑣
𝑐2 ) =

= 𝑚 (1 − | ⃗𝑣|2
𝑐2 )

− 1
2

⃗𝑣 =

= 𝛾 𝑚 ⃗𝑣 ,
and energy as

𝐸 ∶= ⃗𝑝 ⋅ ⃗𝑣 − ℒ =
= 𝛾 𝑚 | ⃗𝑣|2 + 𝛾−1 𝑚 𝑐2 =

= 𝛾 𝑚 𝑐2 (| ⃗𝑣|2
𝑐2 + 𝛾−2) =

= 𝛾 𝑚 𝑐2 (| ⃗𝑣|2
𝑐2 + 1 − | ⃗𝑣|2

𝑐2 ) =

= 𝛾 𝑚 𝑐2 .

10 Chapter 2. Special Relativity - Notes
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2.2 Electromagnetism

2.2.1 Classical electromagnetic theory

Maxwell equations

Maxwell equations read

⎧{{
⎨{{⎩

∇ ⋅ ⃗𝑑 = 𝜌𝑓
∇ × ⃗𝑒 + 𝜕𝑡𝑏⃗ = ⃗0
∇ ⋅ ⃗𝑏 = 0
∇ × ℎ⃗ − 𝜕𝑡 ⃗𝑑 = ⃗𝑗𝑓

or in vacuum, with 𝜌𝑓 = 𝜌, ⃗𝑗 = ⃗𝑗𝑓 , ⃗𝑑 = 𝜀0 ⃗𝑒, ⃗𝑏 = 𝜇0ℎ⃗

⎧{{
⎨{{⎩

∇ ⋅ ⃗𝑒 = 𝜌
𝜀0

∇ × ⃗𝑒 + 𝜕𝑡 ⃗𝑏 = ⃗0
∇ ⋅ ⃗𝑏 = 0
∇ × ⃗𝑏 − 𝜇0𝜀0𝜕𝑡 ⃗𝑒 = 𝜇0 ⃗𝑗

Electromagnetic potentials

The electromagnetic field can be written in terms of the electromagnetic potentials

{
⃗𝑏 = ∇ × ⃗𝑎
⃗𝑒 = −𝜕𝑡 ⃗𝑎 − ∇𝜑

Lorentz force

A particle in motion in a electromagnetic field is subject to Lorentz force. In classical electromagnetism, the expression
of Lorentz force reads

⃗𝐹 = 𝑞 ( ⃗𝑒 − ⃗𝑏 × ⃗𝑣) ,

whose power is

⃗𝑣 ⋅ ⃗𝐹 = ⃗𝑣 ⋅ 𝑞 ( ⃗𝑒 − ⃗𝑏 × ⃗𝑣) = 𝑞 ⃗𝑣 ⋅ ⃗𝑒 .

2.2.2 Electromagnetic potential

{
⃗𝑏 = ∇ × ⃗𝑎
⃗𝑒 = −𝜕𝑡 ⃗𝑎 − ∇𝜑

A = E𝛼𝐴𝛼 = 𝜑
𝑐 E0 + ⃗𝑎

𝛁A = (E𝛼 𝜕
𝜕𝑋𝛼 ) (𝐴𝛽E𝛽) = 𝜕𝐴𝛽

𝜕𝑋𝛼E𝛼 ⊗ E𝛽 = 𝑔𝛼𝛾
𝜕𝐴𝛽

𝜕𝑋𝛼E𝛾 ⊗ E𝛽 .

2.2. Electromagnetism 11
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whose components may be collected in a 2-dimensional array (first index for rows, second index for columns),

(∇A)𝛽
𝛼 = 𝜕𝐴𝛽

𝜕𝑋𝛼 =
⎡
⎢⎢
⎣

𝑐−2𝜕𝑡𝜑 𝑐−1𝜕𝑥𝜑 𝑐−1𝜕𝑦𝜑 𝑐−1𝜕𝑧𝜑
𝑐−1𝜕𝑡𝑎𝑥 𝜕𝑥𝑎𝑥 𝜕𝑦𝑎𝑥 𝜕𝑧𝑎𝑥
𝑐−1𝜕𝑡𝑎𝑦 𝜕𝑥𝑎𝑦 𝜕𝑦𝑎𝑦 𝜕𝑧𝑎𝑦
𝑐−1𝜕𝑡𝑎𝑧 𝜕𝑥𝑎𝑧 𝜕𝑦𝑎𝑧 𝜕𝑧𝑎𝑧

⎤
⎥⎥
⎦

or covariant-covariant coomponents,

(∇A)𝛼𝛽 = 𝜕𝐴𝛽
𝜕𝑋𝛼 = 𝑔𝛽𝛾

𝜕𝐴𝛾

𝜕𝑋𝛼 =
⎡
⎢⎢
⎣

𝑐−2𝜕𝑡𝜑 𝑐−1𝜕𝑥𝜑 𝑐−1𝜕𝑦𝜑 𝑐−1𝜕𝑧𝜑
−𝑐−1𝜕𝑡𝑎𝑥 −𝜕𝑥𝑎𝑥 −𝜕𝑦𝑎𝑥 −𝜕𝑧𝑎𝑥
−𝑐−1𝜕𝑡𝑎𝑦 −𝜕𝑥𝑎𝑦 −𝜕𝑦𝑎𝑦 −𝜕𝑧𝑎𝑦
−𝑐−1𝜕𝑡𝑎𝑧 −𝜕𝑥𝑎𝑧 −𝜕𝑦𝑎𝑧 −𝜕𝑧𝑎𝑧

⎤
⎥⎥
⎦

or contravariant-contravariant coomponents,

(∇A)𝛼𝛽 = 𝜕𝐴𝛽

𝜕𝑋𝛼
= 𝑔𝛽𝛾

𝜕𝐴𝛼

𝜕𝑋𝛾 =
⎡
⎢⎢
⎣

𝑐−2𝜕𝑡𝜑 −𝑐−1𝜕𝑥𝜑 −𝑐−1𝜕𝑦𝜑 −𝑐−1𝜕𝑧𝜑
𝑐−1𝜕𝑡𝑎𝑥 −𝜕𝑥𝑎𝑥 −𝜕𝑦𝑎𝑥 −𝜕𝑧𝑎𝑥
𝑐−1𝜕𝑡𝑎𝑦 −𝜕𝑥𝑎𝑦 −𝜕𝑦𝑎𝑦 −𝜕𝑧𝑎𝑦
𝑐−1𝜕𝑡𝑎𝑧 −𝜕𝑥𝑎𝑧 −𝜕𝑦𝑎𝑧 −𝜕𝑧𝑎𝑧

⎤
⎥⎥
⎦

The electromagnetic field tensor is defined as the anti-symmetric part of the gradient of the 4-electromagnetic potential,

F = [𝛁A − (𝛁A)𝑇 ]

whose components may be collected in a 2-dimensional array (first index for rows, second index for columns),

𝐹 𝛼𝛽 = [0 − 𝑒𝑇

𝑐𝑒
𝑐 𝑏×

] , 𝐹𝛼𝛽 = [ 0 𝑒𝑇

𝑐
− 𝑒

𝑐 𝑏×
]

2.2.3 Electromagnetic field and electromagnetic field equations

The pair of Maxwell equations

{𝜌𝑓 = ∇ ⋅ ⃗𝑑
⃗𝑗𝑓 = −𝜕𝑡 ⃗𝑑 + ∇ × ℎ⃗

can be re-written in 4-formalism, using 4-gradient in Cartesian coordinates

𝛁 = E𝛼 𝜕
𝜕𝑋𝛼 = E0

𝜕
𝑐𝜕𝑡 + E𝑖

𝜕
𝜕𝑥𝑖 = E0

𝜕
𝑐𝜕𝑡 + ∇ ,

and the definition of the 4-current density vector

J = 𝐽𝛼E𝛼 = 𝑐𝜌E0 + ⃗𝑗

so that

𝑐𝜌E0 + ⃗𝑗 = 𝛁 ⋅ F = 𝛁 ⋅ [(0E0 + 𝑐 ⃗𝑑) ⊗ E0 + (−E0𝑐 ⃗𝑑 + ℎ⃗×)] ,

with the displacement field tensor,

D = 𝐷𝛼𝛽 E𝛼 E𝛽 ,

with components (rows for the first index, columns for the second index)

𝐷𝛼𝛽 =
⎡
⎢⎢
⎣

0 −𝑐𝑑𝑥 −𝑐𝑑𝑦 −𝑐𝑑𝑧
𝑐𝑑𝑥 0 −ℎ𝑧 ℎ𝑦
𝑐𝑑𝑦 ℎ𝑧 0 −ℎ𝑥
𝑐𝑑𝑧 −ℎ𝑦 ℎ𝑥 0

⎤
⎥⎥
⎦

= [ 0 −𝑐𝑑𝑇

𝑐𝑑 ℎ× . ]

12 Chapter 2. Special Relativity - Notes
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The pair of Maxwell equations

{∇ ⋅ ⃗𝑏 = 0
𝜕𝑡 ⃗𝑏 + ∇ × ⃗𝑒 = ⃗0

can be re-written in 4-formalism as

0 = 𝜕𝜇𝐹𝜂𝜉 + 𝜕𝜂𝐹𝜉𝜇 + 𝜕𝜉𝐹𝜇𝜂

Among these 64 = 43 equations, there are only 4 independent equations.
• If 2 indices are the same, the corresponding equation is the identity 0 = 0. As an example, if 𝜇 = 𝜂

0 = 𝜕𝜇𝐹𝜇𝜉 + 𝜕𝜇 𝐹𝜉𝜇⏟
−𝐹𝜇𝑥𝑖

+𝜕𝜉 𝐹𝜇𝜇⏟
=0

= 0 ,

thus only combinations with different indices may provide some information.
• Given the ordered set of indices (𝜇, 𝜂, 𝜉), switching a pair of indices provides the same equation. As an example,
switching 𝜇 and 𝜂

0 = 𝜕𝜂𝐹𝜇𝜉 + 𝜕𝜇𝐹𝜉𝜂 + 𝜕𝜉𝐹𝜂𝜇 =
= 𝜕𝜂(−𝐹𝜉𝜇) + 𝜕𝜇(−𝐹𝜂𝜉) + 𝜕𝜉(−𝐹𝜇𝜂) .

• Thus, only 4 combination of different indices, without taking order into account, provide independent information

(1, 2, 3) ∶ 0 = 𝜕1𝐹23 + 𝜕2𝐹31 + 𝜕3𝐹12 = 𝜕𝑥(−𝑏𝑥) + 𝜕𝑦(−𝑏𝑦) + 𝜕𝑧(−𝑏𝑧)
(2, 3, 0) ∶ 0 = 𝜕2𝐹30 + 𝜕3𝐹02 + 𝜕0𝐹23 = 𝜕𝑦 (−𝑒𝑧

𝑐 ) + 𝜕𝑧 (𝑒𝑦
𝑐 ) + 𝜕𝑐𝑡(−𝑏𝑥)

(3, 0, 1) ∶ 0 = 𝜕3𝐹01 + 𝜕0𝐹13 + 𝜕1𝐹30 = 𝜕𝑧 (𝑒𝑥
𝑐 ) + 𝜕𝑐𝑡(−𝑏𝑦) + 𝜕𝑥 (−𝑒𝑧

𝑐 )

(0, 1, 2) ∶ 0 = 𝜕0𝐹12 + 𝜕1𝐹20 + 𝜕2𝐹01 = 𝜕𝑐𝑡(−𝑏𝑧) + 𝜕𝑥 (−𝑒𝑦
𝑐 ) + 𝜕𝑦 (𝑒𝑥

𝑐 )

i.e.
(1, 2, 3) ∶ 0 = −∇ ⋅ ⃗𝑏

(2, 3, 0) ∶ 0 = −1
𝑐 [𝜕𝑡𝑏𝑥 + (𝜕𝑦𝑒𝑧 − 𝜕𝑧𝑒𝑦)]

(3, 0, 1) ∶ 0 = −1
𝑐 [𝜕𝑡𝑏𝑦 + (𝜕𝑧𝑒𝑥 − 𝜕𝑥𝑒𝑧)]

(0, 1, 2) ∶ 0 = −1
𝑐 [𝜕𝑡𝑏𝑧 + (𝜕𝑥𝑒𝑦 − 𝜕𝑦𝑒𝑥)]

i.e.

{0 = ∇ ⋅ ⃗𝑏
⃗0 = 𝜕𝑡 ⃗𝑏 + ∇ × ⃗𝑒

2.2.4 Point particle in electromagnetic field

Lorentz 4-force acting on a point charge of electric charge charge 𝑞 reads

f = F ⋅ J = 𝑞 F ⋅ U .

so that the dynamical equation reads

𝑚X″ = 𝑞 F ⋅ X′

2.2. Electromagnetism 13
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2.2.5 Energy balance

𝜕𝑢
𝜕𝑡 =
𝜕 ⃗𝑠
𝜕𝑡 =

…

𝛁 ⋅ T = −F ⋅ J
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CHAPTER

SIX

STATISTICAL PHYSICS - NOTES

6.1 Ensembles

6.2 Microcanonical ensemble

6.3 Canonical ensemble

6.4 Macrocanonical esemble

6.5 Statistics

Each of the 𝑁 components of the system is in an energy level 𝑖. Energy level 𝑖 has 𝑔𝑖 sublevels with the same energy
level.

• energy levels, 𝐸𝑖 of each component
• occupation number 𝑁𝑖 of level 𝑖
• Central role of energy. In a system macroscopically at rest, the energy of a system is the only macroscopic
meaningful non-zero mechanical quantity, constant for closed and isolated systems

• Principle of maximum uncertainty, maximum entropy, minimum information: given a measurement of a
macroscopic variable 𝑉 , describing the macrostate of the system, the feasible un-observed/able microstates of the
system are the microstates consistent with it: there’s usually a sharp maximum of in the probability density of the
micrsotates.

Given a macrostate, what’s the number of ways 𝑊(𝑁𝑖; 𝑔𝑖) to get a consistent microstate? Once the expression is found,
constrained optimization follows: optimization w.r.t. 𝑁𝑖 is usually performed in the limit of 𝑁𝑖 → +∞ (why in Fermi-
Dirac distribution, obeying Pauli exclusion principle?), with the values of the macroscopic variables as constraints usually
treated with Lagrange multiplier.

25
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6.5.1 Maxwell-Boltzmann

Statistics of distinguishible components.

6.5.2 Bose-Einstein

Statistics of undistinguishable components that can be in the same (sub)level. Given the number of elementary components
∑𝑖 𝑁𝑖 = 𝑁 and the energy ∑𝑖 𝑁𝑖𝐸𝑖 = 𝐸,

𝑊𝐵𝐸,𝑖 = (𝑁𝑖 + 𝑔𝑖 − 1)!
𝑁𝑖!(𝑔𝑖 − 1)! , 𝑊𝐵𝐸 = ∏

𝑖
𝑊𝐵𝐸,𝑖 . (6.1)

Counting microstates

todo write page Combinatorics and add link
Most likelymicrostate. Instead of maximizing (6.1), the objective function is ln𝑊𝐵𝐸, after using Stirling approximation
in the limit of large 𝑁𝑖 and 𝑔𝑖, 𝑁𝑖! ∼ ( 𝑁𝑖

𝑒 )𝑁𝑖 . The approximate occupation number of one of the 𝐺𝑖 sublevels of the
𝑖𝑡ℎ level of the most likely microstate is

𝑛𝑖 ∶= 𝑁𝑖
𝐺𝑖

= 1
𝑒𝛼+𝛽𝐸𝑖 − 1 .

Optimization

𝐽(𝑁𝑖, 𝛼, 𝛽) = ln𝑊𝐵𝐸 + 𝛼 (𝑁 − ∑
𝑖

𝑁𝑖) + 𝛽 (𝐸 − ∑
𝑖

𝑁𝑖𝐸𝑖) =

= ∑
𝑖

{ln(𝑁𝑖 + 𝑔𝑖 − 1)! − ln𝑁𝑖! − ln(𝑔𝑖 − 1)!} + 𝛼 (𝑁 − ∑
𝑖

𝑁𝑖) + 𝛽 (𝐸 − ∑
𝑖

𝑁𝑖𝐸𝑖) ≃

≃ ∑
𝑖

{(𝑁𝑖 + 𝑔𝑖 − 1) ln(𝑁𝑖 + 𝑔𝑖 − 1) − 𝑁𝑖 ln𝑁𝑖 − (𝑔𝑖 − 1) ln(𝑔𝑖 − 1) + 𝑁𝑖 + 𝑔𝑖 − 1 − 𝑁𝑖 − (𝑔𝑖 − 1)} + 𝛼 (𝑁 − ∑
𝑖

𝑁𝑖) + 𝛽 (𝐸 − ∑
𝑖

𝑁𝑖𝐸𝑖) =

= ∑
𝑖

{(𝑁𝑖 + 𝑔𝑖 − 1) ln(𝑁𝑖 + 𝑔𝑖 − 1) − 𝑁𝑖 ln𝑁𝑖 − (𝑔𝑖 − 1) ln(𝑔𝑖 − 1)} + 𝛼 (𝑁 − ∑
𝑖

𝑁𝑖) + 𝛽 (𝐸 − ∑
𝑖

𝑁𝑖𝐸𝑖)

Using 𝜕𝑛(𝑛 + 𝑎) ln(𝑛 + 𝑎) = ln(𝑛 + 𝑎) + 1,

0 = 𝜕𝑁𝑘
𝐽 ≃ {ln(𝑁𝑘 + 𝑔𝑘 − 1) − ln𝑁𝑘} − 𝛼 − 𝛽𝐸𝑘 ,

and thus

ln 𝑁𝑘 + 𝑔𝑘 − 1
𝑁𝑘

= 𝛼 + 𝛽𝐸𝑘 ,

𝑁𝑘 + 𝑔𝑘 − 1
𝑁𝑖

= 𝑒𝛼+𝛽𝐸𝑘

𝑁𝑘 = 𝑔𝑘 − 1
𝑒𝛼+𝛽𝐸𝑘 − 1 ≃ 𝑔𝑘

𝑒𝛼+𝛽𝐸𝑘 − 1 ,
Thus, in the limit of 𝑔𝑘 ≫ 1, the occupation number of the 𝑘 level is

𝑁𝑘 = 𝐺𝑘
𝑒𝛼+𝛽𝐸𝑘 − 1 ,
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and the average occupation number of one of the 𝑔𝑘 sublevels in the 𝑘 level is

𝑛𝑘 ∶= 𝑁𝑘
𝐺𝑘

= 1
𝑒𝛼+𝛽𝐸𝑘 − 1

Meaning of 𝛼, 𝛽

Example 1 (Black-body radiation: Planck, Wien, and Stefan-Boltzmann laws)
Planck’s law. Energy density w.r.t. frequency

𝑢𝑓(𝑓, 𝑇 ) = 8𝜋ℎ𝑓3

𝑐3
1

𝑒
ℎ𝑓

𝑘𝐵𝑇 − 1

Planck’s law in a cubic box

Planck’s law uses:
• relation between pulsation and wave vector, or frequency and wave number and the speed of light 𝑐 for light waves

𝑐 = 𝜔
|𝑘⃗|

= 𝜆𝑓

𝑓 = 𝜔
2𝜋 = 𝑐|𝑘⃗|

2𝜋
• Planck assumption that the minimum non-zero energy of a mode with frequency 𝑓 is 𝐸 = ℎ𝑓 , and all the possible
values of the energy of the mode is

𝐸𝑚 = 𝑚ℎ𝑓 , 𝑚 ∈ ℕ .

Taking a cubic box with sides 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 𝐿, the possibile modes have (todo why? Which boundary condition?
Periodic? Some physical? Just fictitious discretization?) in each direction wave-lengths 𝜆𝑛 = 𝐿

|𝑛⃗| = 2𝜋
|𝑘⃗| ,

𝑘⃗ = 2𝜋
𝐿 𝑛⃗ .

Mode density in 𝑛⃗-domain is 2 mode per each volume of unit length (2 polarization), and thus the number of modes 𝑑𝑁
in an elementary volume is

𝑑𝑁 = 2 𝑑3𝑛⃗ ,

Changing variables, it’s possible to find the mode density w.r.t. wave vector 𝑘⃗,

𝑑𝑁 = 2 𝑑3𝑛⃗ = 2 𝐿3

(2𝜋)3 𝑑3𝑘⃗ ,

or with its absolute value, exploiting the isotropy of the density function - and writing the elementary volume using
“spherical coordinates” 𝑑3𝑘⃗ = 4𝜋 ∣𝑘⃗∣2 𝑑 ∣𝑘⃗∣,

𝑑𝑁 = 𝑉
(2𝜋)3 8𝜋 ∣𝑘⃗∣2 𝑑 ∣𝑘⃗∣ =

= 𝑉
(2𝜋)3 8𝜋 8𝜋3

𝑐3 𝑓2𝑑𝑓 =

= 𝑉 8𝜋
𝑐3 𝑓2𝑑𝑓 =∶ 𝑉 𝑔(𝑓)𝑑𝑓 .

6.5. Statistics 27



Modern Physics

Average energy of a mode

Using Boltzmann distribution (why?) for the energy distribution in a single mode,

𝑃(𝐸𝑟) = 𝑒−𝛽𝐸𝑟

𝑍 ,

with 𝐸𝑟 = 𝑟ℎ𝑓 , and the partition function

𝑍 = ∑
𝑠

𝑒−𝛽𝐸𝑠 = ∑
𝑠

𝑒−𝛽ℎ𝑓𝑠 = 1
1 − 𝑒−𝛽ℎ𝑓 .

The average energy of the mode reads

⟨𝐸⟩ = ∑
𝑟

𝐸𝑟𝑃(𝐸𝑟) =

= ∑
𝑟

𝑟ℎ𝑓 𝑒−𝛽ℎ𝑓𝑟

𝑍 =

= ℎ𝑓(1 − 𝑒−𝛽ℎ𝑓) ∑
𝑟

𝑟𝑒−𝛽ℎ𝑓𝑟 =

= ℎ𝑓(1 − 𝑒−𝛽ℎ𝑓) 𝑒−𝛽ℎ𝑓

(1 − 𝑒−𝛽ℎ𝑓)2 =

= ℎ𝑓
𝑒𝛽ℎ𝑓 − 1 .

Putting together the mode number density and the average energy of a mode, the energy density per unit volume, per
frequency reads

𝑢(𝑓, 𝑇 ) = ⟨𝐸⟩(𝑓) 𝑔(𝑓) =

= ℎ𝑓
𝑒𝛽ℎ𝑓 − 1

8𝜋
𝑐3 𝑓2 =

= 8𝜋ℎ𝑓3

𝑐3
1

𝑒𝛽ℎ𝑓 − 1 .

Property of the series

+∞
∑
𝑛=0

𝑛𝑥𝑛 = 𝑥
(1 − 𝑥)2

Proof. If the series is convergent (is this the required condition?)

𝑑
𝑑𝑥

+∞
∑
𝑛=0

𝑥𝑛 = 𝑑
𝑑𝑥

1
1 − 𝑥 = 1

(1 − 𝑥)2

𝑑
𝑑𝑥

+∞
∑
𝑛=0

𝑥𝑛 =
+∞
∑
𝑛=0

𝑛𝑥𝑛−1

𝑥 𝑑
𝑑𝑥

+∞
∑
𝑛=0

𝑥𝑛 =
+∞
∑
𝑛=0

𝑛𝑥𝑛 = 𝑥
(1 − 𝑥)2

Sperctral radiance, 𝐵𝑓 , so that an infinitesimal amount of power radiated by a surface … is 𝑑𝑃 =
𝐵𝑓(𝑓, 𝑇 ) cos 𝜃 𝑑𝐴 𝑑Ω 𝑑𝑓

𝐵𝑓(𝑓, 𝑇 ) = 2ℎ𝑓3

𝑐2
1

𝑒
ℎ𝑓

𝑘𝐵𝑇 − 1
.
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This expression is obtained1 assuming homogeneous radiation from a small hole cut into a wall of the box. Only half of
the energy radiates through the hole - so factor 1

2 in front of the energy density - through a solid angle 2𝜋 - and thus this
process give the same result as a radiation of all the energy density in all the space directions, just providing the same
factor 1

4𝜋 . The flux of energy “has velocity” 𝑐 and thus

𝐵𝑓(𝑓, 𝑇 ) = 1
4𝜋 𝑢𝑓(𝑓, 𝑇 )𝑐 .

Wien’s law. Wien’s law tells that the frequency 𝑓∗ corresponding to themaximum of the spectral radiance of a black-body
radiation described by Planck’s law is proportional to its temperature.
From direct evaluation of the derivative of the spectral radiance as a function of 𝑓 ,

𝜕𝑓𝐵𝑓(𝑓, 𝑇 ) = 2ℎ
𝑐2

⎡⎢⎢
⎣

3𝑓2 1
𝑒

ℎ𝑓
𝑘𝐵𝑇 − 1

+ 𝑓3 ⎛⎜⎜⎜
⎝

−
ℎ

𝑘𝐵𝑇 𝑒
ℎ𝑓

𝑘𝐵𝑇

(𝑒
ℎ𝑓

𝑘𝐵𝑇 − 1)
2

⎞⎟⎟⎟
⎠

⎤⎥⎥
⎦

=

= 2ℎ𝑓2𝑒
ℎ𝑓

𝑘𝐵𝑇

𝑐2 (𝑒
ℎ𝑓

𝑘𝐵𝑇 − 1)
2 [3 (1 − 𝑒− ℎ𝑓

𝑘𝐵𝑇 ) − ℎ𝑓
𝑘𝐵𝑇 ] .

Now, if 𝜕𝑓𝐵𝑓(𝑓, 𝑇 ) = 0 the frequency is either 𝑓 = 0, or the solution of the nonlinear algebraic equation

0 = 3 (1 − 𝑒− ℎ𝑓
𝑘𝐵𝑇 ) − ℎ𝑓

𝑘𝐵𝑇 .

Defining 𝑥 ∶= ℎ𝑓
𝑘𝐵𝑇 , this equation becomes

0 = 3(1 − 𝑒𝑥) − 𝑥 ,

whose solution 𝑥∗ ≈ 2.82 can be easily evaluated with an iterative method (or expressed in term of the Lambert’s function
𝑊 , so loved at Stanford and on Youtube: they’d probaly like to look at tabulated values, or pose). Once the solution 𝑥∗

of this non-dimensional equation is found, the frequency where maximum energy density occurs reads

𝑓∗ = 𝑘𝐵𝑇
ℎ 𝑥∗ ≃ 2.82𝑘𝐵

ℎ 𝑇 .

Stefan-Boltzmann law.
𝑃
𝐴 = ∫ 𝐵𝑓(𝑓, 𝑇 ) cos𝜙 𝑑𝑓 𝑑Ω =

= ∫
+∞

𝑓=0
∫

𝜋
2

𝜙=0
∫

2𝜋

𝜃=0
𝐵𝑓(𝑓, 𝑇 ) cos𝜙 sin𝜙 𝑑𝑓 𝑑𝜙 𝑑𝜃 =

= 𝜋 ∫
+∞

𝑓=0
𝐵𝑓(𝑓, 𝑇 ) 𝑑𝑓 =

= 2𝜋ℎ
𝑐2 ∫

+∞

𝑓=0

𝑓3

𝑒
ℎ𝑓

𝑘𝐵𝑇 − 1
𝑑𝑓 =

= 2𝜋ℎ
𝑐2 (𝑘𝐵𝑇

ℎ )
4

∫
+∞

𝑢=0

𝑢3

𝑒𝑢 − 1 𝑑𝑢 .

The value of the integral is 𝜋4
15 and thus

𝑃
𝐴 = 𝜎𝑇 4 , 𝜎 = 2𝜋5𝑘4

𝐵
15𝑐2ℎ3 .

1 Derivation of Planck’s Law.
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Example 2 (Energy density and radiance)
Radiance. The radiance 𝐿𝑒,Ω of a surface is the flux of energy per unit solid angle, per unit projected area of the source.

Spectral radiance in frequency is the radiance per unit frequency, 𝐿𝑒,Ω,𝑓 = 𝜕𝐿𝑒,Ω
𝜕𝑓 .

6.5.3 Fermi-Dirac

Statistics of undistinguishable components that can’t be in the same (sub)level, obeying to the Pauli exclusion principle.
Given the number of elementary components ∑𝑖 𝑁𝑖 = 𝑁 and the energy ∑𝑖 𝑁𝑖𝐸𝑖 = 𝐸,

𝑊𝐹𝐷,𝑖 = 𝐺𝑖!
(𝐺𝑖 − 𝑁𝑖)!𝑁𝑖!

, 𝑊𝐹𝐷 = ∏
𝑖

𝑊𝐹𝐷,𝑖 . (6.2)

Counting microstates

todo write page Combinatorics and add link
Most likely microstate. The approximate occupation number of the 𝑖𝑡ℎ level of the most likely microstate is

𝑛𝑖 ∶= 𝑁𝑖
𝐺𝑖

= 1
1 + 𝑒𝛼+𝛽𝐸𝑖

.

Optimization

𝐽(𝑁𝑖, 𝛼, 𝛽) = ln𝑊𝐹𝐷 + 𝛼 (𝑁 − ∑
𝑖

𝑁𝑖) + 𝛽 (𝐸 − ∑
𝑖

𝑁𝑖𝐸𝑖) =

= ∑
𝑖

{ln𝐺𝑖! − ln(𝐺𝑖 − 𝑁𝑖)! − ln𝑁𝑖!} + 𝛼 (𝑁 − ∑
𝑖

𝑁𝑖) + 𝛽 (𝐸 − ∑
𝑖

𝑁𝑖𝐸𝑖) =

= ∑
𝑖

{𝐺𝑖 ln𝐺𝑖 − (𝐺𝑖 − 𝑁𝑖) ln(𝐺𝑖 − 𝑁𝑖) − 𝑁𝑖 ln𝑁𝑖} + 𝛼 (𝑁 − ∑
𝑖

𝑁𝑖) + 𝛽 (𝐸 − ∑
𝑖

𝑁𝑖𝐸𝑖) =

Using 𝜕𝑛(𝑛 + 𝑎) ln(𝑛 + 𝑎) = ln(𝑛 + 𝑎) + 1,
0 = 𝜕𝑁𝑘

𝐽 ≃ {ln(𝐺𝑘 − 𝑁𝑘) − ln𝑁𝑘} − 𝛼 − 𝛽𝐸𝑘 ,

and thus

ln 𝐺𝑘 − 𝑁𝑘
𝑁𝑘

= 𝛼 + 𝛽𝐸𝑘 ,

𝐺𝑘
𝑁𝑘

− 1 = 𝑒𝛼+𝛽𝐸𝑘

The occupation number of the 𝑘 level is

𝑁𝑘 = 𝐺𝑘
1 + 𝑒𝛼+𝛽𝐸𝑘

.

The average occupation of the 𝐺𝑘 sublevels of the 𝑘 level is

𝑛𝑘 ∶= 𝑁𝑘
𝐺𝑘

= 1
1 + 𝑒𝛼+𝛽𝐸𝑘

.
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Meaning of 𝛼, 𝛽
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SEVEN

STATISTICAL PHYSICS - STATISTICS MISCELLANEA

Information content and Entropy

Given a discrete random variable 𝑋 with probability mass function 𝑝𝑋(𝑥), the self-information (todo what about mutual
information of random variables?) is defined as the opposite of the logaritm of the mass function 𝑝𝑋(𝑥),

𝐼𝑋(𝑥) ∶= − ln (𝑝𝑋(𝑥)) .

Information content of indenpendent random variables is additive. Since 𝑝𝑋,𝑌 (𝑥, 𝑦) = 𝑝𝑋(𝑥)𝑝𝑌 (𝑦),

𝐼𝑋,𝑌 (𝑥, 𝑦) = − ln (𝑝𝑋,𝑌 (𝑥, 𝑦)) = − ln (𝑝𝑋(𝑥)𝑝𝑌 (𝑦)) = − ln 𝑝𝑋(𝑥) − ln 𝑝𝑌 (𝑦) .

Shannon entropy. Shannon entropy of a discrete random variable 𝑋 is defined as the expected value of the information
content,

𝐻(𝑋) ∶= 𝔼[𝐼𝑋(𝑋)] = ∑ 𝑝𝑋(𝑥)𝐼𝑋(𝑥) = − ∑ 𝑝𝑋 ln 𝑝𝑋(𝑥) .

Gibbs entropy. Gibbs entropy was defined by J.W.Gibbs in 1878,

𝑆 = −𝑘𝐵 ∑
𝑖

𝑝𝑖 ln 𝑝𝑖 .

Additivity holds for independent random variables.
Boltzmann entropy. Boltmann entropy holds for uniform distributions over Ω possible states, 𝑝𝑖 = 1

Ω . Gibbs’ entropy
of this uniform distribution becomes

𝑆 = −𝑘𝐵Ω 1
Ω ln 1

Ω = 𝑘𝐵 lnΩ .

Entropy in Quantum Mechanics. todo

Boltzmann distribution

Given a set of discrete states with probability 𝑝𝑖, and the average measure as “macroscopic quantity” 𝐸 = ∑𝑖 𝑝𝑖𝐸𝑖,
Boltzann distribution maximizes the entropy (todo Link to min info, max uncertainty)

𝑆 = −𝑘𝐵 ∑
𝑖

𝑝𝑖 ln 𝑝𝑖 .

The distribution follows from the constrained optimization

𝑆 = 𝑆 − 𝛼 (∑
𝑖

𝑝𝑖 − 1) − 𝛽 (∑
𝑖

𝑝𝑖𝐸𝑖 − 𝐸)
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0 = 𝜕𝛼𝑆 = − ∑
𝑖

𝑝𝑖 − 1

0 = 𝜕𝛽𝑆 = − ∑
𝑖

𝑝𝑖𝐸𝑖 − 𝐸

0 = 𝜕𝑝𝑘
𝑆 = −𝑘𝐵 (ln 𝑝𝑘 + 1) − 𝛼 − 𝛽𝐸𝑘

and thus

𝑝𝑘 = 𝑒−1− 𝛼
𝑘𝐵

− 𝛽
𝑘𝐵

𝐸𝑘 = 𝑒−(1+ 𝛼
𝑘𝐵

)𝑒− 𝛽
𝑘𝐵

𝐸𝑘 = 𝐶𝑒− 𝛽
𝑘𝐵

𝐸𝑘 ,

and the normalization constant 𝐶 is determined by normalization condition

1 = ∑
𝑘

𝑝𝑘 = 𝐶 ∑
𝑘

𝑒− 𝛽𝐸𝑘
𝑘𝐵

The inverse 𝑍 = 𝐶−1 is defined as the partition function,

𝑍 = 𝐶−1 = ∑
𝑘

𝑒− 𝛽𝐸𝑘
𝑘𝐵 ,

and the probability distribution becomes

𝑝𝑘 = 𝑒− 𝛽𝐸𝑘
𝑘𝐵

𝑍 = 𝑒− 𝛽𝐸𝑘
𝑘𝐵

∑𝑖 𝑒− 𝛽𝐸𝑖
𝑘𝐵

.

Properties.
𝑝𝑘
𝑝𝑖

= 𝑒− 𝛽
𝑘𝐵

(𝐸𝑘−𝐸𝑖) .

Thermodynamics. Comparison of statistics and classical thermodynamics

First principle of classical thermodynamics (for a monocomponent gas with no electric charge,…) reads

𝑇 𝑑𝑆 = 𝑑𝐸 + 𝑃 𝑑𝑉

Entropy for Boltzmann distribution reads

𝑆 = −𝑘𝐵 ∑
𝑖

𝑝𝑖 ln 𝑝𝑖 =

= −𝑘𝐵 ∑
𝑖

[𝑝𝑖 (−𝛽𝐸𝑖
𝑘𝐵

− ln𝑍)] =

= 𝛽⟨𝐸⟩ + 𝑘𝐵 ln𝑍
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From classical thermodyamics, temperature 𝑇 can be defined as the partial derivative of the entropy of a system w.r.t. its
internal energy keeping constant all the other independent variables,

1
𝑇 = ( 𝜕𝑆

𝜕𝐸 )∣
𝑋

=

= 𝜕𝛽
𝜕𝐸 𝐸 + 𝛽 + 𝑘𝐵

𝜕 ln𝑍
𝜕𝐸 =

= 𝜕𝛽
𝜕𝐸 𝐸 + 𝛽 + 𝑘𝐵

1
𝑍

𝜕𝑍
𝜕𝐸 =

= 𝜕𝛽
𝜕𝐸 𝐸 + 𝛽 + 𝑘𝐵

1
𝑍

𝜕𝑍
𝜕𝛽

𝜕𝛽
𝜕𝐸 =

= 𝜕𝛽
𝜕𝐸 𝐸 + 𝛽 + 𝑘𝐵

1
𝑍 (− ∑

𝑖

𝐸𝑖
𝑘𝐵

𝑒− 𝛽𝐸𝑖
𝑘𝐵 ) 𝜕𝛽

𝜕𝐸 =

= 𝜕𝛽
𝜕𝐸 𝐸 + 𝛽 − (∑

𝑖
𝐸𝑖𝑝𝑖)

𝜕𝛽
𝜕𝐸 =

= 𝜕𝛽
𝜕𝐸 𝐸 + 𝛽 − 𝐸 𝜕𝛽

𝜕𝐸 = 𝛽 .

todo
• write the derivative above clearly in terms of composite functions
• microscopical/statistical approach to the first principle of thermodynamics

𝑑𝐸 = 𝑑 (∑
𝑖

𝑝𝑖𝐸𝑖) = ∑
𝑖

𝐸𝑖 𝑑𝑝𝑖 + ∑
𝑖

𝑝𝑖𝑑𝐸𝑖
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CHAPTER

EIGHT

QUANTUM MECHANICS

• Principles and postulates
– statistics and measurements outcomes (Heisenberg built its matrix mechanics only on observables…)
– CCR

• angluar momentum, spin, and atom

8.1 Mathematical tools for quantum mechanics

Definition 1 (Operator)

Definition 2 (Adjoint operator)

Given an operator ̂𝐴 ∶ 𝑈 → 𝑉 , its adjoint operator ̂𝐴∗ ∶ 𝑉 → 𝑈 is the operator s.t.

(v, ̂𝐴u)𝑉 = (u, ̂𝐴∗v)𝑈

holds for ∀u ∈ 𝑈, v ∈ 𝑉 .

Definition 3 (Hermitian (self-adjoint) operator)

The operator ̂𝐴 ∶ 𝑈 → 𝑈 is a self-adjoint operator if

̂𝐴∗ = ̂𝐴 .

Self-adjoint operators have real eigenvalues, and orthogonal eigenvectors (at least those associated to different eigenvalues;
those associated with the same eigenvalues can be used to build an orthogonal set of vectors with orthogonalization
process).
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8.2 Postulates of Quantum Mechanics

• …
• Canonical Commutation Relation (CCR) and Canonical Anti-Commutation Relation…

• …

8.3 Non-relativistic Mechanics

8.3.1 Statistical Interpretation and Measurement

Wave function

The state of a system is described by a wave function |Ψ⟩
todo

• properties: domain, image,…

• unitary 1 = ⟨Ψ|Ψ⟩ = |Ψ|2, for statistical interpretation of |Ψ|2 as a density probability function

Operators and Observables

Physical observable quantities are represented by Hermitian operators. Possible outcomes of measurement are the eigen-
values of the operator

Given ̂𝐴 and the set of its eigenvectors {|𝐴𝑖⟩}𝑖 (todo continuous or discrete spectrum…, need to treat this difference quite
in details), with associated eigenvalues {𝑎𝑖}𝑖

̂𝐴|𝐴𝑖⟩ = 𝑎𝑖|𝐴𝑖⟩

|Ψ⟩ = |𝐴𝑖⟩⟨𝐴𝑖|Ψ⟩ = |𝐴𝑖⟩Ψ𝐴
𝑖

⟨𝐴𝑗|Ψ⟩ = ⟨𝐴𝑗|𝐴𝑖⟩⟨𝐴𝑖|Ψ⟩ = Ψ𝐴
𝑗

and thus

Ψ𝐴
𝑗 = ⟨𝐴𝑗|Ψ⟩

Ψ𝐴∗
𝑗 = ⟨Ψ|𝐴𝑗⟩

• identity operator ∑𝑖 |𝐴𝑖⟩⟨𝐴𝑖| = 𝕀, since

∑
𝑖

|𝐴𝑖⟩⟨𝐴𝑖|Ψ⟩ = ∑
𝑖

|𝐴𝑖⟩⟨𝐴𝑖|Ψ𝐴
𝑗 𝐴𝑗⟩ = ∑

𝑖
|𝐴𝑖⟩𝛿𝑖𝑗Ψ𝐴

𝑗 = ∑
𝑖

|𝐴𝑖⟩Ψ𝐴
𝑖 = |Ψ⟩

• Normalization:

1 = ⟨Ψ|Ψ⟩ = Ψ𝐴∗
𝑗 ⟨𝐴𝑗|𝐴𝑖⟩⏟

𝛿𝑖𝑗

Ψ𝐴
𝑖 = ∑

𝑖
∣Ψ𝐴

𝑖 ∣2

with |Ψ𝐴
𝑖 |2 that can be interpreted as the probability of finding the system in state |Ψ𝑎

𝑖 ⟩
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• Expected value of the physical quantity in the a state |Ψ⟩, with possible values 𝑎𝑖 with probability |Ψ𝐴
𝑖 |2

̄𝐴Ψ = ∑
𝑖

𝑎𝑖|Ψ𝐴
𝑖 |2 =

= ∑
𝑖

𝑎𝑖Ψ𝐴∗
𝑖 Ψ𝐴

𝑖 =

= ∑
𝑖

𝑎𝑖⟨Ψ|𝐴𝑖⟩⟨𝐴𝑖|Ψ⟩ =

= ⟨Ψ| (∑
𝑖

𝑎𝑖|𝐴𝑖⟩⟨𝐴𝑖|) |Ψ⟩ =

= ⟨Ψ| ̂𝐴|Ψ⟩ =

since an operator ̂𝐴 can be written as a function of its eigenvalues and eigenvectors

(∑
𝑖

𝑎𝑖|𝐴𝑖⟩⟨𝐴𝑖|) Ψ⟩ = (∑
𝑖

𝑎𝑖|𝐴𝑖⟩⟨𝐴𝑖|) 𝑐𝑘|𝐴𝑘⟩ =

= ∑
𝑖

𝑎𝑖|𝐴𝑖⟩𝑐𝑖 =

= ∑
𝑖

̂𝐴|𝐴𝑖⟩𝑐𝑖 =

= ̂𝐴 ∑
𝑖

|𝐴𝑖⟩𝑐𝑖 = ̂𝐴|Ψ⟩ .

Space Representation

Position operator ̂r has eigenvalues r identifying the possible measurements of the position

̂r|r⟩ = r|r⟩ ,

being r the result of the measurement (position in space, mathematically it could be a vector), and |r⟩ the state function
corresponding to the measurement r of the position.

• Result of measurement, r, is a position in space. As an example, it could be a point in an Euclidean space 𝑃 ∈ 𝐸𝑛.
It could be written using properties of Dirac’s delta “function”

r = ∫
r′

𝛿(r′ − r) r′𝑑r′

• Projection of wave function over eigenstates of position operator

⟨r|Ψ⟩(𝑡) = Ψ(r, 𝑡) = ∫
r′

𝛿(r − r′)Ψ(r′, 𝑡)𝑑r′ =

= ∫
r′

⟨r|r′⟩Ψ(r′, 𝑡)𝑑r′ =

= ∫
r′

⟨r|r′⟩⟨r′|Ψ⟩(𝑡)𝑑r′ =

= ⟨r| (∫
r′

|r′⟩⟨r′|𝑑r′)
⏟⏟⏟⏟⏟⏟⏟

= ̂1

|Ψ⟩(𝑡) .

• having used orthogonality (todo why? provide definition and examples of operators with continuous spectrum)

⟨r′|r⟩ = 𝛿(r′ − r)
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• Expansion of a state function |Ψ⟩(𝑡) over the basis of the position operator

|Ψ⟩(𝑡) = ̂1|Ψ⟩(𝑡) = (∫
r′

|r′⟩⟨r′𝑑r′) |Ψ⟩(𝑡) = ∫
r′

|r′⟩⟨r′|Ψ⟩(𝑡) 𝑑r′ .

• Unitariety and probability density

1 = ⟨Ψ|Ψ⟩(𝑡) = ⟨Ψ| (∫
r′

|r′⟩⟨r′𝑑r′) |Ψ⟩

= ∫
r′

⟨Ψ|r′⟩⟨r′|Ψ⟩ 𝑑r′

= ∫
r′

Ψ∗(r′, 𝑡)Ψ(r′, 𝑡) 𝑑r′

= ∫
r′

|Ψ(r′, 𝑡)|2 𝑑r′

and thus |Ψ(r, 𝑡)|2 can be interpreted as the probability density function of measuring position of the system
equal to r′.

• Average value of the operator

̄r = ⟨Ψ| ̂r|Ψ⟩ =

= ∫
r′

⟨Ψ|r′⟩⟨r′|𝑑r′ | ̂r| ∫
r″

|r″⟩⟨r″|Ψ⟩ 𝑑r″

= ∫
r′

∫
r″

⟨Ψ|r′⟩⟨r′| ̂r|r″⟩⟨r″|Ψ⟩ 𝑑r′𝑑r″ =

= ∫
r′

∫
r″

⟨Ψ|r′⟩ ⟨r′|r″⟩⏟
=𝛿(r′−r″)

r″⟨r″|Ψ⟩ 𝑑r′𝑑r″ =

= ∫
r′

⟨Ψ|r′⟩r′⟨r′|Ψ⟩ 𝑑r′ =

= ∫
r′

Ψ∗(r′, 𝑡) r′ Ψ(r′, 𝑡) 𝑑r′ =

= ∫
r′

|Ψ(r′, 𝑡)|2 r′ 𝑑r′ .

Momentum Representation

Momentum operator as the limit of…todo prove the expression of the momentum operator as the limit of the generator
of translation

⟨r|p̂ = −𝑖ℏ∇⟨r|

• Spectrum

p̂|p⟩ = p|p⟩

⟨r|p̂|p⟩ = −𝑖ℏ∇⟨r|p⟩ = p⟨r|p⟩
and thus the eigenvectors in space base p(r) = ⟨r|p⟩ are the solution of the differential equation

−𝑖ℏ∇p(r) = pp(r) ,

42 Chapter 8. Quantum Mechanics



Modern Physics

that in Cartesian coordinates reads

−𝑖ℏ𝜕𝑗𝑝𝑘(r) = 𝑝𝑗𝑝𝑘(r)

𝑝𝑘(r) = 𝑝𝑘,0 exp [𝑖𝑝𝑗
ℏ 𝑟𝑗]

or

⟨r|p⟩ = p(r) = p0 exp [𝑖p ⋅ r
ℏ ]

todo
– normalization factor 1

(2𝜋) 3
2

ℱ{𝛿(𝑥)}(𝑘) = ∫
∞

−∞
𝛿(𝑥)𝑒−𝑖𝑘𝑥 𝑑𝑥 = 1

– Fourier transform and inverse Fourier transform: definitions and proofs (link to a math section)
– representation in basis of wave vector operator k̂, p̂ = ℏk̂

From position to momentum representation

Momentum and wave vector, p = ℏk

⟨p|Ψ⟩ = ⟨p| ∫
r′

|r′⟩⟨r′|Ψ⟩𝑑r′ =

= ∫
r′

⟨p|r′⟩⟨r′|Ψ⟩𝑑r′ =

= 1
(2𝜋)3/2 ∫

r′
exp [𝑖p ⋅ r

ℏ ] ⟨r′|Ψ⟩𝑑r′ =

Relation between position and wave-number representation can be represented with a Fourier transform

⟨k|Ψ⟩ = ⟨k| ∫
r′

|r′⟩⟨r′|Ψ⟩𝑑r′ =

= ∫
r′

⟨k|r′⟩⟨r′|Ψ⟩𝑑r′ =

= 1
(2𝜋)3/2 ∫

r′
exp [𝑖k ⋅ r′] ⟨r′|Ψ⟩𝑑r′ =

= 1
(2𝜋)3/2 ∫

r′
exp [𝑖k ⋅ r′] Ψ(r′)𝑑r′ =

= ℱ{Ψ(r)}(k)

8.3.2 Schrodinger Equation

𝑖ℏ 𝑑
𝑑𝑡 |Ψ⟩ = 𝐻̂|Ψ⟩

being 𝐻̂ the Hamiltonian operator and |Ψ⟩ the wave function, as a function of time 𝑡 as an independent variable.
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Stationary States

Eigenspace of the Hamiltonian operator

𝐻̂|Ψ𝑘⟩ = 𝐸𝑘|Ψ𝑘⟩ ,

with 𝐸𝑘 possible values of energy measurements. If no eigenstates with the same eigenvalue exists, then…otherwise…
Without external influence todo be more detailed!, energy values and eigenstates of the systems are constant in time.
Thus, exapnding the state of the system |Ψ⟩ over the stationary states gives |Ψ𝑘⟩, |Ψ⟩ = |Ψ𝑘⟩𝑐𝑘(𝑡), and inserting in
Schrodinger equation

𝑖ℏ ̇𝑐𝑘|Ψ𝑘⟩ = 𝑐𝑘𝐸𝑘|Ψ𝑘⟩

and exploiting orthogonality of eigenstates, a diagonal system for the amplitudes of stationary states ariese,

𝑖ℏ ̇𝑐𝑘 = 𝑐𝑘𝐸𝑘 .

whose solution reads

𝑐𝑘(𝑡) = 𝑐𝑘,0 exp [−𝑖𝐸𝑘
ℏ 𝑡]

Thus the state of the system evolves like a superposition of monochromatic waves with frequencies 𝜔𝑘 = 𝐸𝑘
ℏ ,

|Ψ⟩ = |Ψ𝑘⟩𝑐𝑘(𝑡) = |Ψ𝑘⟩𝑐𝑘,0 exp [−𝑖𝐸𝑘
ℏ 𝑡] .

𝑑
𝑑𝑡

̄𝐴 = 𝑑
𝑑𝑡 (⟨Ψ| ̂𝐴|Ψ⟩) =

= 𝑑
𝑑𝑡⟨Ψ| ̂𝐴|Ψ⟩ + ⟨Ψ|𝑑

̂𝐴
𝑑𝑡 |Ψ⟩ + ⟨Ψ| ̂𝐴 𝑑

𝑑𝑡 |Ψ⟩ =

= ⟨Ψ|𝑑
̂𝐴

𝑑𝑡 |Ψ⟩ + 𝑖
ℏ⟨Ψ|𝐻̂ ̂𝐴|Ψ⟩ − 𝑖

ℏ⟨Ψ| ̂𝐴𝐻̂|Ψ⟩ =

= ⟨Ψ| ( 𝑖
ℏ[𝐻̂, ̂𝐴] + 𝑑 ̂𝐴

𝑑𝑡 ) |Ψ⟩ .

Pictures

• Schrodinger
• Heisenberg
• Interaction

Schrodinger

If 𝐻̂ not function of time

|Ψ⟩(𝑡) = exp[−𝑖𝐻̂
ℏ (𝑡 − 𝑡0)] |Ψ⟩(𝑡0) = ̂𝑈(𝑡, 𝑡0)|Ψ⟩(𝑡0)

̄𝐴 = ⟨Ψ| ̂𝐴|Ψ⟩ = ⟨Ψ0| ̂𝑈∗(𝑡, 𝑡0) ̂𝐴 ̂𝑈(𝑡, 𝑡0)|Ψ0⟩
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Heisenberg

…
for 𝐻̂ independent from time 𝑡,

𝑑
𝑑𝑡 ̄r = 𝑖

ℏ [𝐻̂, ̂r]
𝑑
𝑑𝑡 p̄ = 𝑖

ℏ [𝐻̂, p̂]

Hamiltonian Mechanics

From Lagrange equations

𝑑
𝑑𝑡 (𝜕𝐿

𝜕 ̇𝑞 ) − 𝜕𝐿
𝜕𝑞 = 𝑄𝑞

𝑞 generalized coordinates, 𝑝 ∶= 𝜕𝐿
𝜕 ̇𝑞 generalized momenta.

Hamiltonian

𝐻(𝑝, 𝑞, 𝑡) = 𝑝 ̇𝑞 − 𝐿( ̇𝑞, 𝑞, 𝑡)

Increment of the Hamiltonian

𝑑𝐻 = 𝜕𝑝𝐻𝑑𝑝 + 𝜕𝑞𝐻𝑑𝑞 + 𝜕𝑡𝐻𝑑𝑡

𝑑𝐻 = ̇𝑞𝑑𝑝 + 𝑝𝑑 ̇𝑞 − 𝜕 ̇𝑞𝐿𝑑 ̇𝑞 − 𝜕𝑞𝐿𝑑𝑞 − 𝜕𝑡𝐿𝑑𝑡 =
= ̇𝑞𝑑𝑝 − 𝜕𝑞𝐿𝑑𝑞 − 𝜕𝑡𝐿𝑑𝑡 =
= ̇𝑞𝑑𝑝 − ( ̇𝑝 + 𝑄𝑞) 𝑑𝑞 − 𝜕𝑡𝐿𝑑𝑡 =

⎧{
⎨{⎩

𝜕𝐻
𝜕𝑝 = ̇𝑞
𝜕𝐻
𝜕𝑞 = − 𝜕𝐿

𝜕𝑞 = − ̇𝑝 + 𝑄𝑞
𝜕𝐻
𝜕𝑡 = − 𝜕𝐿

𝜕𝑡

Physical quantity 𝑓(𝑝(𝑡), 𝑞(𝑡), 𝑡). Its time derivative reads

𝑑𝑓
𝑑𝑡 = 𝜕𝑓

𝜕𝑝 ̇𝑝 + 𝜕𝑓
𝜕𝑞 ̇𝑞 + 𝜕𝑓

𝜕𝑡 =

= 𝜕𝑓
𝜕𝑝 [−𝜕𝐻

𝜕𝑞 + 𝑄𝑞] + 𝜕𝑓
𝜕𝑞

𝜕𝐻
𝜕𝑝 + 𝜕𝑓

𝜕𝑡 =

= {𝐻, 𝑓} + 𝜕𝑡𝑓 + 𝑄𝑞𝜕𝑝𝑓

If 𝑄𝑞 = 0, the correspondence between quantum mechanics and classical mechanics

𝑑𝑓
𝑑𝑡 = {𝐻, 𝑓} + 𝜕𝑡𝑓 ↔ 𝑑

𝑑𝑡
̂𝑓 = 𝑖

ℏ [𝐻̂, ̂𝑓] + 𝜕 ̂𝑓
𝜕𝑡

{𝐻, 𝑓} ↔ 𝑖
ℏ[𝐻̂, ̂𝑓]
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Interaction

8.3.3 Matrix Mechanics

Attualization of 1925 papers

…to find the canonical commutation relation,

[ ̂r, p̂] = 𝑖ℏ𝕀 ̂1 .

[ ̂r, p̂] = ̂rp̂ − p̂ ̂r =

= ̂r∫
r
|r⟩⟨r|𝑑rp̂ − p̂∫

r
|r⟩⟨r|𝑑r ̂r ∫

r′
|r′⟩⟨r′|𝑑r′ =

= − ∫
r
r|r⟩𝑖ℏ∇⟨r| 𝑑r − p̂∫

r
∫
r′

|r⟩r′ ⟨r|r′⟩⏟
𝛿(r−r′)

⟨r′|𝑑r′ =

= − ∫
r
r|r⟩𝑖ℏ∇⟨r| 𝑑r − p̂∫

r
r|r⟩⟨r|𝑑r =

= − ∫
r
r|r⟩𝑖ℏ∇⟨r| 𝑑r − ∫

r′
|r⟩⟨r|𝑑r p̂ ∫

r′
r′|r′⟩⟨r′|𝑑r′ =

= − ∫
r
r|r⟩𝑖ℏ∇⟨r| 𝑑r + ∫

r
|r⟩𝑖ℏ∇⟨r|𝑑r∫

r′
r′|r′⟩⟨r′|𝑑r′ = …

[ ̂r, p̂] |Ψ⟩ = − ∫
r
r|r⟩𝑖ℏ∇Ψ(r, 𝑡) + ∫

r
|r⟩𝑖ℏ∇ (rΨ(r, 𝑡)) =

= − ∫
r
|r⟩𝑖ℏ [r∇Ψ(r, 𝑡) + 𝕀Ψ(r, 𝑡) + r∇Ψ(r, 𝑡)] =

= 𝑖ℏ ∫
r
|r⟩⟨r|𝑑r

⏟⏟⏟⏟⏟
̂1

|Ψ⟩ ,

and since |Ψ⟩ is arbitrary

[ ̂r, p̂] = 𝑖ℏ𝕀 ̂1 .

[ ̂𝑟𝑎, ̂𝑝𝑏] = 𝑖ℏ𝛿𝑎𝑏 .

8.3.4 Heisenberg Uncertainty relation

Uncertainty principle is a relation that holds for “wave descriptions” as it can be proved in the generic framework of
Fourier transform, see Fourier transform:Uncertainty relation.

• Heisenberg uncertainty relation is a relation between product of the variance of two physical quantities and their
commutator,

• todo relation with measurement process and outcomes. Commutation as a measurement process: first measure 𝐵
and then 𝐴, or first measure 𝐴 and then 𝐵

𝜎𝐴𝜎𝐵 ≥ 1
2 ∣[ ̂𝐴, 𝐵̂]∣ .
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Proof of Heisenberg uncertainty “principle”

𝜎2
𝐴𝜎2

𝐵 = ⟨Ψ| ( ̂𝐴 − ̄𝐴)
2

|Ψ⟩⟨Ψ| (𝐵̂ − 𝐵̄)2 |Ψ⟩ =
= ⟨( ̂𝐴 − ̄𝐴)Ψ|( ̂𝐴 − ̄𝐴)Ψ⟩⟨(𝐵̂ − 𝐵̄)Ψ|(𝐵̂ − 𝐵̄)Ψ⟩ =
= ‖( ̂𝐴 − ̄𝐴)Ψ‖2‖(𝐵̂ − 𝐵̄)Ψ‖2 =

≥ ∣⟨( ̂𝐴 − ̄𝐴)Ψ|(𝐵̂ − 𝐵̄)Ψ⟩∣
2

=

= ∣⟨Ψ|( ̂𝐴 − ̄𝐴)(𝐵̂ − 𝐵̄)Ψ⟩∣
2

=

= ∣⟨Ψ| ̂𝐴𝐵̂ − ̂𝐴𝐵̄ − ̄𝐴𝐵̂ + ̄𝐴𝐵̄|Ψ⟩∣
2

=

= ∣⟨Ψ| ̂𝐴𝐵̂ − ̄𝐴𝐵̄|Ψ⟩∣
2

≥ (1)

= ∣⟨Ψ| ̂𝐴𝐵̂ − 𝐵̂ ̂𝐴|Ψ⟩
2𝑖 ∣

2

=

=
∣⟨Ψ|[ ̂𝐴, 𝐵̂]|Ψ⟩∣

2

4 = 1
4 ∣[ ̂𝐴, 𝐵̂]∣

2

having used Cauchy-Schwartz triangle inequality in (1),

|𝑧| ≥ |im(𝑧)| = 𝑧 − 𝑧∗

2𝑖 .

Hesienberg uncertainty principles applied to position and momentum reads

𝜎𝑟𝑎
𝜎𝑝𝑏

≥ 1
2 ∣[ ̂𝑟𝑎, ̂𝑝𝑏]∣ = ℏ

2 𝛿𝑎𝑏 .

8.4 Many-body problem

Wave function with symmetries: Fermions and Bosons

8.4. Many-body problem 47
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