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Classical Electromagnetism and Principles of Electrical Engineering

This material is part of the basics-books project. It is also available as a .pdf document.

Classical electromagnetism

Brief history of electromagnetism. todo
Principles of classical electromagnetism. Principles of electromagnetism (charge conservation, Lorentz’s force and
Maxwell’s equations) are first introduced for electromagentic phenomena in free-space, in both differential and integral
form. Then, equations governing electromagnetism in matter are discussed: free charge and current are distinguished
from bound charte and current, resulting from polarization and the magnetization of matter as a response to external
fields are described, and introduced into the constitutive equations characterizing the behavior of matter. Integral form
of governing equations is provided for both control volumes and arbitrary domains in motion w.r.t. the observer, and this
description is used to introduce the low-speed relativity of physical quantities involved in electromagnetism.
Electromagentic potentials and wave equations. Electromagnetic potentials are introduced, along with gauge conditions.
Wave equations for physical quantities in electromagnetism are then introduced. Plane waves are discussed along with
interface phenomena like rifraction and reflecion.
Force, Moments on charges, Momentum and Energy of the electromagnetic field.
Regimes.
Einstein’s special relativity and electromagnetism.

Electric Engineering

Electric circuits.
Electromagentic systems.
Electromagneto-mechanics systems.
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CHAPTER

TWO

PRINCIPLES OF CLASSICAL ELECTROMAGNETISM

2.1 Principles of Classical Electromagnetism in Free Space

The progress in the study of electromagnetic phenomena during the 19th century allowed James Clerk Maxwell to formu-
late what are now known asMaxwell’s equations, which can be considered the first consistent formulation of the principles
of classical electromagnetism, together with the charge conservation law and the expression for the Lorentz force on an
electric charge immersed in an electromagnetic field.
Principles are introduced here for total charges and the electric and the magnetic field, in the form that is known as
equations of electromagnetism in vacuum. Equations of electromagnetism in matter (1) separate the contribution
of free and bound charges and currents, and (2) introduce polarization and magnetization of matter in constitutive
equations representing the macroscopic response of the media as a result of local microscopic charge distribution induced
by “external” fields.
Here principles of electromagnetism are first shown in their differential form: (1) continuity equation of electric charge
describes the conservation of electric charge, (2) Maxwell’s equations govern the generation of the electromagnteic field
by electric charge and currents, while (3) the differential form of Lorentz’s force gives the expression of the force per
unit volume acting on a distribution of electric charge and currents immersed in an electromagnetic field. Then, the more
general integral form1 is presented for control volume, at rest w.r.t. the observer - an inertial one? - and then derived form
arbitrary domains, using the rules for time derivatives of integrals over moving domains, and this description is used to
have a first discussion about relativity in electromagnetism.

2.1.1 Principles in Differential Form

The principles in differential form can be derived from the more general integral form, provided the fields satisfy the
necessary minimal regularity conditions, which can be qualitatively stated as “all operations must make sense.”
Conservation of Electric Charge. Differential form of conservation of electric charge is described by a continuity
equation for the electric charge density 𝜌( ⃗𝑟, 𝑡), with electric current ⃗𝑗 = 𝜌 ⃗𝑣 as the flux - where ⃗𝑣( ⃗𝑟, 𝑡) is the average
velocity of the charges in the point ⃗𝑟 of space at time 𝑡

𝜕𝑡𝜌 + ∇ ⋅ ⃗𝑗 = 0 .

Maxwell’s Equations. Maxwell’s equations give the relations between the electric charge and current densities, with the
1 As in continuummechanics, integral equations are the most general form of the equations that governs the global behavior of a system and requires

no assumption of regularity of the physical quantities involved. Under the assumptions of regularity, differential equations can be derived from integral
equations using theorems of calculus involving differential operators of the fields: differential equations provide local balances. If the fields are piece-
wise regular in different regions of the domain, it’s possible to derive and use differenial equations in each sub-domain, and link them through jump
conditions.

7

https://basics2022.github.io/bbooks-math-miscellanea/ch/tensor-algebra-calculus/time-derivative-of-integrals.html


Classical Electromagnetism and Principles of Electrical Engineering

electromagnetic field ⃗𝑒( ⃗𝑟, 𝑡), ⃗𝑏( ⃗𝑟, 𝑡),

⎧{{
⎨{{⎩

∇ ⋅ ⃗𝑒 = 𝜌
𝜀0

∇ × ⃗𝑒 + 𝜕𝑡 ⃗𝑏 = ⃗0
∇ ⋅ ⃗𝑏 = 0
∇ × ⃗𝑏 − 𝜀0𝜇0 𝜕𝑡 ⃗𝑒 = 𝜇0 ⃗𝑗 ,

with the permittivity of free space - or the dielectric constant of free space - 𝜀0 and the permeability of the free
space, 𝜇0

𝜀0 = 8.85 ⋅ 10−12 Fm−1

𝜇0 = 4𝜋 ⋅ 10−7 NA−2

Lorentz Force. The force per unit volume acting on the electric charges at point ⃗𝑟 and time 𝑡 is governed by differential
form of Lorent’z force

⃗𝑓( ⃗𝑟, 𝑡) = 𝜌( ⃗𝑟, 𝑡) ⃗𝑒( ⃗𝑟, 𝑡) + ⃗𝑗( ⃗𝑟, 𝑡) × ⃗𝑏( ⃗𝑟, 𝑡) =
= 𝜌( ⃗𝑟, 𝑡) [ ⃗𝑒( ⃗𝑟) + ⃗𝑣( ⃗𝑟, 𝑡) × ⃗𝑏( ⃗𝑟, 𝑡)] =
= 𝜌∗( ⃗𝑟, 𝑡) ⃗𝑒∗( ⃗𝑟, 𝑡)

having defined 𝜌∗( ⃗𝑟), 𝑡 ⃗𝑒∗( ⃗𝑟, 𝑡) as the current desntiy and the electric field as seen by the moving charge

2.1.2 Principles in Integral Form: Electromagnetic Equations and Galilean Relativ-
ity

Integral Form on Control Volumes

The integral form of the principles of electromagnetism for fixed volumes 𝑉 and surfaces 𝑆 in space is obtained by
integrating the differential equations over the domains and using the divergence theorem to obtain flux terms, and Stokes’
theorem to obtain circulation terms.
Continuity of Electric Charge.

𝑑
𝑑𝑡 ∫

𝑉
𝜌 + ∮

𝜕𝑉
⃗𝑗 ⋅ 𝑛̂ = 0

𝑑
𝑑𝑡𝑄𝑉 + Φ𝜕𝑉 ( ⃗𝑗) = 0

Gauss’s Law for the Field ⃗𝑒( ⃗𝑟, 𝑡).

∮
𝜕𝑉

⃗𝑒 ⋅ 𝑛̂ = ∫
𝑉

𝜌
𝜀0

Φ𝜕𝑉 ( ⃗𝑒) = 𝑄𝑉
𝜀0

Gauss’s Law for the Field ⃗𝑏( ⃗𝑟, 𝑡).

∮
𝜕𝑉

⃗𝑏 ⋅ 𝑛̂ = 0

Φ𝜕𝑉 ( ⃗𝑏) = 0

8 Chapter 2. Principles of Classical Electromagnetism
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Faraday–Neumann–Lenz Law for Electromagnetic Induction.

∮
𝜕𝑆

⃗𝑒 ⋅ ̂𝑡 + 𝑑
𝑑𝑡 ∫

𝑆
⃗𝑏 ⋅ 𝑛̂ = 0

Γ𝑆 ( ⃗𝑒) + 𝑑
𝑑𝑡Φ𝑆 ( ⃗𝑏) = 0

Ampère–Maxwell Law.

∮
𝜕𝑆

⃗𝑏 ⋅ ̂𝑡 − 𝑑
𝑑𝑡 ∫

𝑆
𝜀0𝜇0 ⃗𝑒 ⋅ 𝑛̂ = ∫

𝑆
𝜇0 ⃗𝑗 ⋅ 𝑛̂

Γ𝜕𝑆 ( ⃗𝑏) − 1
𝑐2

0

𝑑
𝑑𝑡Φ𝑆 ( ⃗𝑒) = 𝜇0Φ𝑆 ( ⃗𝑗) ,

having introduced the speed of velocity in free space, 𝑐0 = 1√𝜀0𝜇0
.

Maxwell’s equations and continuity equation of electric charge are overdetermined
Introducing (1) the time derivative of Gauss law of the electric field ⃗𝑒( ⃗𝑟, 𝑡) and (2) the Ampére-Maxwell law in the
continuity equation of the electric charge

0 = 𝑄̇𝑉 + Φ𝜕𝑉 ( ⃗𝑗) = (1)
= 𝜀0Φ̇𝜕𝑉 ( ⃗𝑒) + Φ𝜕𝑉 ( ⃗𝑗) =

= 1
𝜇0

[𝜇0𝜀0Φ̇𝜕𝑉 ( ⃗𝑒) + 𝜇0Φ𝜕𝑉 ( ⃗𝑗)] = (2)

= 1
𝜇0

Γ𝜕𝜕𝑉 ( ⃗𝑏) = 0 ,

an identity appears as the contour 𝜕𝑆 of a closed surface 𝑆 = 𝜕𝑉 has zero dimension. Thus, these equations are not
linearly independent and the system is over-determined.

Integral Form on Arbitrary Volumes

Due to their importance in fundamental applications such as electric motors, and to avoid confusion or leaps in logic when
dealing with electromagnetic induction, it is crucial to provide the correct expression of the electromagnetic principles
when moving volumes are involved in space. Not only is the form of these principles shown, but also the correct procedure
to derive them starting from the fixed-control-volume version. This is done using rules for time derivative for fundamental
integrals over moving domains, such as the integral of a density function over a volume, the flux of a vector field through
a surface, or the circulation along a curve.
These three derivative rules are listed here and proved in the material about Mathematics:Vector and Tensor Algebra and
Calculus:Time derivatives of integrals over moving domains

𝑑
𝑑𝑡 ∫

𝑣𝑡

𝑓 = ∫
𝑣𝑡

𝜕𝑓
𝜕𝑡 + ∮

𝜕𝑣𝑡

𝑓 ⃗𝑣𝑏 ⋅ 𝑛̂ (density)

𝑑
𝑑𝑡 ∫

𝑠𝑡

⃗𝑓 ⋅ 𝑛̂ = ∫
𝑠𝑡

𝜕 ⃗𝑓
𝜕𝑡 ⋅ 𝑛̂ + ∫

𝑠𝑡

∇ ⋅ ⃗𝑓 ⃗𝑣𝑏 ⋅ 𝑛̂ − ∮
𝜕𝑠𝑡

⃗𝑣𝑏 × ⃗𝑓 ⋅ ̂𝑡 (flux)

𝑑
𝑑𝑡 ∫

ℓ𝑡

⃗𝑓 ⋅ ̂𝑡 = ∫
ℓ𝑡

𝜕 ⃗𝑓
𝜕𝑡 ⋅ ̂𝑡 + ∫

ℓ𝑡

∇ × ⃗𝑓 ⋅ ⃗𝑣𝑏 × ̂𝑡 + ⃗𝑓𝐵 ⋅ ⃗𝑣𝐵 − ⃗𝑓𝐴 ⋅ ⃗𝑣𝐴 (circulation)

2.1. Principles of Classical Electromagnetism in Free Space 9
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Continuity of Electric Charge.

0 = 𝑑
𝑑𝑡 ∫

𝑉
𝜌 + ∮

𝜕𝑉
⃗𝑗 ⋅ 𝑛̂ =

= 𝑑
𝑑𝑡 ∫

𝑣𝑡

𝜌 − ∮
𝜕𝑣𝑡

𝜌 ⃗𝑣𝑏 ⋅ 𝑛̂ + ∮
𝜕𝑣𝑡

⃗𝑗 ⋅ 𝑛̂

𝑑
𝑑𝑡 ∫

𝑣𝑡

𝜌 + ∮
𝜕𝑣𝑡

𝜌( ⃗𝑣 − ⃗𝑣𝑏)⏟
⃗𝑗∗

⋅𝑛̂

Gauss’s Law for the Field ⃗𝑑( ⃗𝑟, 𝑡).

∮
𝜕𝑣𝑡

⃗𝑑 ⋅ 𝑛̂ = ∫
𝑣𝑡

𝜌

Gauss’s Law for the Field ⃗𝑏( ⃗𝑟, 𝑡).

∮
𝜕𝑣𝑡

⃗𝑏 ⋅ 𝑛̂ = 0

Faraday–Neumann–Lenz Law for Electromagnetic Induction.

⃗0 = ∮
𝜕𝑆

⃗𝑒 ⋅ ̂𝑡 + 𝑑
𝑑𝑡 ∫

𝑆
⃗𝑏 ⋅ 𝑛̂ =

= ∮
𝜕𝑠𝑡

⃗𝑒 ⋅ ̂𝑡 + 𝑑
𝑑𝑡 ∫

𝑠𝑡

⃗𝑏 ⋅ 𝑛̂ − ∫
𝑠𝑡

∇ ⋅ ⃗𝑏⏟
=0

⃗𝑣𝑏 ⋅ 𝑛̂ + ∮
𝑠𝑡

⃗𝑣𝑏 × ⃗𝑏 ⋅ ̂𝑡 =

∮
𝜕𝑠𝑡

⃗𝑒∗ ⋅ ̂𝑡 + 𝑑
𝑑𝑡 ∫

𝑠𝑡

⃗𝑏 ⋅ 𝑛̂ ,

with the definition ⃗𝑒∗ ∶= ⃗𝑒 + ⃗𝑣𝑏 ⋅ 𝑏⃗, already used in the expression of the Lorentz force law.
Ampère–Maxwell Law.

⃗0 = ∮
𝜕𝑠𝑡

ℎ⃗ ⋅ ̂𝑡 − 𝑑
𝑑𝑡 ∫

𝑠𝑡

⃗𝑑 ⋅ 𝑛̂ − ∫
𝑠𝑡

⃗𝑗 ⋅ 𝑛̂ =

= ∮
𝜕𝑠𝑡

ℎ⃗ ⋅ ̂𝑡 − 𝑑
𝑑𝑡 ∫

𝑠𝑡

⃗𝑑 ⋅ 𝑛̂ + ∫
𝑠𝑡

∇ ⋅ ⃗𝑑⏟
=𝜌

⃗𝑣𝑏 ⋅ 𝑛̂ − ∮
𝑠𝑡

⃗𝑣𝑏 × ⃗𝑑 ⋅ ̂𝑡 − ∫
𝑠𝑡

⃗𝑗 ⋅ 𝑛̂ =

∮
𝜕𝑠𝑡

ℎ⃗∗ ⋅ ̂𝑡 − 𝑑
𝑑𝑡 ∫

𝑠𝑡

⃗𝑏 ⋅ 𝑛̂ = ∫
𝑠𝑡

⃗𝑗∗ ⋅ 𝑛̂ ,

having defined ℎ⃗∗ ∶= ℎ⃗ − ⃗𝑣𝑏 × ⃗𝑑, and using the previously introduced definition ⃗𝑗∗ ∶= ⃗𝑗 − 𝜌 ⃗𝑣𝑏.
Adding the definitions:

𝜌∗ = 𝜌
⃗𝑑∗ = ⃗𝑑
⃗𝑏∗ = ⃗𝑏

one obtains equations having the same form as those written for stationary domains in space, but which can be applied to
moving domains. The definitions:

𝜌∗ = 𝜌 , ⃗𝑗∗ = ⃗𝑗 − 𝜌 ⃗𝑣𝑏
⃗𝑑∗ = ⃗𝑑 , ⃗𝑒∗ = ⃗𝑒 + ⃗𝑣𝑏 × ⃗𝑏
⃗𝑏∗ = ⃗𝑏 , ℎ⃗∗ = ℎ⃗ − ⃗𝑣𝑏 × ⃗𝑑

10 Chapter 2. Principles of Classical Electromagnetism
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are nothingmore than the transformation of the fields for two observers in relativemotion, and correspond to the low-speed
limit of Lorentz transformations from special relativity for velocities | ⃗𝑣𝑏| ≪ 𝑐: in this procedure, the transformations for
low relative speeds are obtained, as no transformation of spatial and temporal dimensions has been considered, unlike
Einstein’s theory of relativity.
todo Reference Galilean and Lorentz transformations for relativity in electromagnetism.

2.2 Electromagnetism in Matter

Electromagnetism in matter requires the description of the behavior of the matter involved in the process. In general, a
medium immersed in an electromagnetic field may respond with local charge distributions, resulting in polarization and
magnetization. Total electric ⃗𝑒( ⃗𝑟, 𝑡) and magnetic field ⃗𝑏( ⃗𝑟, 𝑡) can be written as the sum of contributions of free charges
𝜌𝑓 and currents ⃗𝑗𝑓 and bound charges 𝜌𝑏 and currents ⃗𝑗𝑏.
Bound charge density represents local separation of charges of molecules of dielectric media immersed in electric field,
that can be represented as a volume distribution of charge dipole,

𝜌 = 𝜌𝑓 + 𝜌𝑏 = 𝜌𝑓 + 𝜌𝑃 .

Bound current density represents two effects: the variation of polarization charge and the orientation of Amperian currents
- “non random” currents in the molecules of the medium, producing net contribution to the magnetic field, and can be
represented as a volume distribution of elementary loop currents.

⃗𝑗 = ⃗𝑗𝑓 + ⃗𝑗𝑏 = ⃗𝑗𝑓 + ⃗𝑗𝑃 + ⃗𝑗𝑀 .

As it will shown below, the bound current can be written as the divergence of the polarization field ⃗𝑝, representing the
volume density fo the dipole distribution, and the magnetization current as the curl of the magnetization field 𝑚⃗,

𝜌𝑝 = −∇ ⋅ ⃗𝑝 , ⃗𝑗𝑀 = ∇ × 𝑚⃗ .

2.2.1 Equations of electromagnetism in matter

Introducing the splitting of free and bound charge and current into the equations of the electromagnetism, namely electric
charge continuity and Maxwell’s equations,

𝜕𝑡𝜌 + ∇ ⋅ ⃗𝑗 = 0 ,

⎧{{
⎨{{⎩

∇ ⋅ ⃗𝑒 = 𝜌
𝜀0

∇ × ⃗𝑒 + 𝜕𝑡 ⃗𝑏 = ⃗0
∇ ⋅ ⃗𝑏 = 0
∇ × ⃗𝑏 − 𝜇0𝜀0𝜕𝑡 ⃗𝑒 = 𝜇0 ⃗𝑗

and more precisely
• into Gauss’ law for the electric field

0 = ∇ ⋅ ⃗𝑒 − 𝜌
𝜀0

= ∇ ⋅ ⃗𝑒 − 𝜌𝑓 − ∇ ⋅ ⃗𝑝
𝜀0

→ ∇ ⋅ ⃗𝑑 = 𝜌𝑓 ,

with ⃗𝑑 = 𝜀0 ⃗𝑒 + ⃗𝑝 defined as the displacement field.

2.2. Electromagnetism in Matter 11



Classical Electromagnetism and Principles of Electrical Engineering

• into continuity equation

0 = 𝜕𝑡𝜌 + ∇ ⋅ ⃗𝑗 =
= 𝜕𝑡𝜌𝑓 + ∇ ⋅ ⃗𝑗𝑓 + 𝜕𝑡𝜌𝑏 + ∇ ⋅ ( ⃗𝑗𝑃 + ∇ × ⃗𝑗𝑀) =

since ∇ ⋅ ∇ × 𝑚⃗ ≡ 0, and keeping separated the contributions of free and bound charges,
𝜕𝑡𝜌𝑓 + ∇ ⋅ ⃗𝑗𝑓 = 0
𝜕𝑡𝜌𝑃 + ∇ ⋅ ⃗𝑗𝑃 = 0

→ ⃗𝑗𝑃 = 𝜕𝑡 ⃗𝑝 .

• and into Ampére-Maxwell’s law
⃗0 = ∇ × ⃗𝑏 − 𝜇0𝜀0𝜕𝑡 ⃗𝑒 − 𝜇0 ⃗𝑗 =
= ∇ × ⃗𝑏 − 𝜇0 𝜕𝑡 ( ⃗𝑑 − ⃗𝑝) − 𝜇0 ⃗𝑗𝑓 − 𝜇0𝜕𝑡 ⃗𝑝 − 𝜇0∇ × 𝑚⃗
= ∇ × ( ⃗𝑏 − 𝜇0𝑚⃗) − 𝑚𝑢0 𝜕𝑡 ⃗𝑑 − 𝜇0 ⃗𝑗𝑓

→ ∇ × ℎ⃗ − 𝜕𝑡 ⃗𝑑 = ⃗𝑗𝑓 ,

where ℎ⃗ ∶= ⃗𝑏 − 𝜇0𝑚⃗, themagnetic field strength.

2.2.2 Examples

• conductors
• ferromagnetic and weak magnetism (para-, dia-, anti-)

2.2.3 Governing equations in differential form

Differential form of Maxwell’s equations

⎧{{
⎨{{⎩

∇ ⋅ ⃗𝑑 = 𝜌𝑓
∇ × ⃗𝑒 + 𝜕𝑡𝑏⃗ = ⃗0
∇ ⋅ ⃗𝑏 = 0
∇ × ℎ⃗ − 𝜕𝑡 ⃗𝑑 = ⃗𝑗𝑓

todo continuity equation for charge

2.2.4 Governing equation in integral form

Integral form of Maxwell’s equations

⎧{{{{{
⎨{{{{{⎩

∮
𝜕𝑉

⃗𝑑 ⋅ ̂𝑛⃗ = ∫
𝑉

𝜌𝑓

∮
𝜕𝑆

⃗𝑒 ⋅ ̂⃗𝑡 + 𝑑
𝑑𝑡 ∫

𝑆
⃗𝑏 ⋅ ̂𝑛⃗ = 0

∮
𝜕𝑉

⃗𝑏 ⋅ ̂𝑛⃗ = 0

∮
𝜕𝑆

ℎ⃗ ⋅ ̂⃗𝑡 − 𝑑
𝑑𝑡 ∫

𝑆
⃗𝑑 ⋅ ̂𝑛⃗ = ∫

𝑆
⃗𝑗𝑓 ⋅ ̂𝑛⃗

12 Chapter 2. Principles of Classical Electromagnetism
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• control volume
• arbitrary domain
• low-speed relativity

2.2.5 Jump Conditions

Letting 𝑉 and 𝑆 “collapse on a discontinuity”…

⎧{{
⎨{{⎩

[𝑑𝑛] = 𝜎𝑓
[𝑒𝑡] = 0
[𝑏𝑛] = 0
[ℎ𝑡] = 𝜄𝑓 ,

(2.1)

being 𝜎𝑓 and 𝜄𝑓 surface charge and current density, with physical dimension charge
surface , and current

surface respectively. These contri-
butions can be thought of as Dirac delta contributions in volume density, namely

𝜌( ⃗𝑟, 𝑡) = 𝜌0( ⃗𝑟, 𝑡) + 𝜎( ⃗𝑟𝑠, 𝑡)𝛿1( ⃗𝑟 − ⃗𝑟𝑠) ,

being 𝜌( ⃗𝑟, 𝑡) the regular part of the volume density in all the points of the domain ⃗𝑟 ∈ 𝑉 , 𝜎( ⃗𝑟𝑠, 𝑡) the surface density on
2-dimensional surfaces ⃗𝑟𝑠 ∈ 𝑆, 𝛿1() the Dirac’s delta with physical dimension 1

length .
If there’s no free surface charge and currents, jump conditions for linear media become

⎧{{
⎨{{⎩

[𝑑𝑛] = 0
[𝑒𝑡] = 0
[𝑏𝑛] = 0
[ℎ𝑡] = 0 ,

→

⎧{{
⎨{{⎩

𝑑𝑛,1 = 𝑑𝑛,2 → 𝜀1𝑒𝑛,1 = 𝜀2𝑒𝑛,2
𝑒𝑡,1 = 𝑒𝑡,2
𝑏𝑛,1 = 𝑏𝑛,2
ℎ𝑡,1 = ℎ𝑡,2 → 1

𝜇1
𝑏𝑡,1 = 1

𝜇2
𝑏𝑡,2

(2.2)

2.2.6 Polarization

Single Electric Dipole

A discrete electric dipole is formed by two equal and opposite electric charges 𝑞, −𝑞, at points 𝑃+, 𝑃− = 𝑃+ ⃗𝑙, in the
limit 𝑞 → +∞, | ⃗𝑙| → 0 with 𝑞| ⃗𝑙| finite.
The electric field (stationary todo check what happens in the non-stationary case. Perhaps after deriving the general solution
to the problem, as a solution to the wave equations in terms of EM potentials) generated at the point in space ⃗𝑟 by an electric
dipole at the point ⃗𝑟0 is calculated as the limit of the electric field generated by two equal and opposite charges 𝑞∓ at the
points ⃗𝑟0 ∓ ⃗𝑙

2 ,

⃗𝑒( ⃗𝑟) = − 𝑞
4𝜋𝜀0

⃗𝑟 − ( ⃗𝑟0 − ⃗𝑙
2 )

∣ ⃗𝑟 − ( ⃗𝑟0 − ⃗𝑙
2 )∣

3 + 𝑞
4𝜋𝜀0

⃗𝑟 − ( ⃗𝑟0 + ⃗𝑙
2 )

∣ ⃗𝑟 − ( ⃗𝑟0 + ⃗𝑙
2 )∣

3 .

Using the formula for the derivative of the terms

𝜕ℓ𝑘

𝑥𝑖 ± ℓ𝑖
2

∣ ⃗𝑥 ± ⃗𝑙
2 ∣

3 = 1
2 [±𝛿𝑖𝑘

𝑟3 − 3𝑟−4 (±𝑥𝑘 ± ℓ𝑘
2

𝑟 )]
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𝜕ℓ𝑘

𝑥𝑖 ± ℓ𝑖
2

∣ ⃗𝑥 ± ⃗𝑙
2 ∣

3
∣
∣∣
∣ ⃗𝑙=0⃗

= ∓1
2 [− 𝛿𝑖𝑘

| ⃗𝑥|3 + 3 (𝑥𝑘
𝑟5 )] = ∓1

2𝜕𝑟0𝑘

𝑟𝑖 − 𝑟0𝑖
| ⃗𝑟 − ⃗𝑟0|3 = ∓1

2∇ ⃗𝑟0

⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3

we derive the first-order approximation in ⃗𝑙 of the two terms

⃗𝑟 − ( ⃗𝑟0 ∓ ⃗𝑙
2 )

∣ ⃗𝑟 − ( ⃗𝑟0 ∓ ⃗𝑙
2 )∣

3 = ⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3

± ⃗𝑙 ⋅ 1
2∇ ⃗𝑟0

( ⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 ) + 𝑜(| ⃗𝑙|)

and, defining the dipole intensity ⃗𝑃0 ∶= 𝑞 ⃗𝑙 and taking the quantities to the desired limit, that of the electric field

⃗𝑒( ⃗𝑟) = − 1
4𝜋𝜀0

⃗𝑃0 ⋅ ∇ ⃗𝑟0
( ⃗𝑟 − ⃗𝑟0

| ⃗𝑟 − ⃗𝑟0|3 ) =

= − 1
4𝜋𝜀0

[( ⃗𝑟 − ⃗𝑟0)( ⃗𝑟 − ⃗𝑟0)
| ⃗𝑟 − ⃗𝑟0|5 ⋅ ⃗𝑃0 −

⃗𝑃0
| ⃗𝑟 − ⃗𝑟0|3 ] =

= − 1
4𝜋𝜀0

[( ⃗𝑟 − ⃗𝑟0) ⊗ ( ⃗𝑟 − ⃗𝑟0)
| ⃗𝑟 − ⃗𝑟0|5 − 𝕀

| ⃗𝑟 − ⃗𝑟0|3 ] ⋅ ⃗𝑃0 .

todo In the general case, it would be necessary to pay attention to the order of the factors in the product between vectors
and tensors, but in this case, the symmetry of the second-order tensor (or of the operations) can be exploited.

Continuous Distribution of Dipoles

A distribution of dipoles with volume density ⃗𝑝( ⃗𝑟0), which produces the elementary dipole Δ ⃗𝑃 ( ⃗𝑟0) = ⃗𝑝( ⃗𝑟0)𝑑𝑉0 in the
volume 𝑑𝑉0, produces the electric field

⃗𝑒( ⃗𝑟) = ∫
⃗𝑟0∈𝑉0

1
4𝜋𝜀0

⃗𝑝( ⃗𝑟0) ⋅ ∇ ⃗𝑟0
( ⃗𝑟 − ⃗𝑟0

| ⃗𝑟 − ⃗𝑟0|3 ) ,

whose expression can be rewritten using the rules of integration by parts

⃗𝑒( ⃗𝑟) = ∫
⃗𝑟0∈𝑉0

1
4𝜋𝜀0

⃗𝑝( ⃗𝑟0) ⋅ ∇ ⃗𝑟0
( ⃗𝑟 − ⃗𝑟0

| ⃗𝑟 − ⃗𝑟0|3 ) =

= ∮
⃗𝑟0∈𝜕𝑉0

1
4𝜋𝜀0

⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3

̂𝑛⃗( ⃗𝑟0) ⋅ ⃗𝑝( ⃗𝑟0)⏟⏟⏟⏟⏟
=∶𝜎𝑃 ( ⃗𝑟0)

+ ∫
⃗𝑟0∈𝑉0

1
4𝜋𝜀0

⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 (−∇ ⃗𝑟0

⋅ ⃗𝑝( ⃗𝑟0))⏟⏟⏟⏟⏟⏟⏟
=∶𝜌𝑃 ( ⃗𝑟0)

,

having defined the surface polarization charge density 𝜎𝑃 and the volume polarization charge density 𝜌𝑃 as the intensities
of the distributed sources of the electric field, in analogy with the expression of Coulomb’s law.

Reformulation of Maxwell’s Equations and Charge Continuity

Gauss’s equation determines the volume flux density of the electric field ⃗𝑒,

∇ ⋅ ⃗𝑒 = 𝜌
𝜀0

.

By decomposing the charge density as the sum of free charges 𝜌𝑓 and polarization charges 𝜌𝑃 ∶= −∇ ⋅ ⃗𝑝, we can
rework Gauss’s equation,

∇ ⋅ ⃗𝑒 = 𝜌𝑓 + 𝜌𝑃
𝜀0

∇ ⋅ (𝜀0 ⃗𝑒 + ⃗𝑝) = 𝜌𝑓

∇ ⋅ ⃗𝑑 = 𝜌𝑓 ,
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having introduced the displacement field, ⃗𝑑 ∶= 𝜀0 ⃗𝑒 + ⃗𝑝.
The decomposition of the electric current as the sum ⃗𝑗 = ⃗𝑗𝑓 + ⃗𝑗𝑃 of the free current ⃗𝑗𝑓 and the polarization current ⃗𝑗𝑃 ,
allows us to rework the continuity equation of electric charge

0 = 𝜕𝑡𝜌 + ∇ ⋅ ⃗𝑗 =
= 𝜕𝑡(𝜌𝑓 + 𝜌𝑃 ) + ∇ ⋅ ( ⃗𝑗𝑓 + ⃗𝑗𝑃 ) =
= 𝜕𝑡𝜌𝑓 + ∇ ⋅ ⃗𝑗𝑓 + 𝜕𝑡𝜌𝑃 + ∇ ⋅ ⃗𝑗𝑃 ,

and write the continuity equations for the two charge distributions (of different nature, it is assumed that both must satisfy
charge continuity independently, if free charges remain free and polarization charges remain polarization charges),

𝜕𝑡𝜌𝑓 + ∇ ⋅ ⃗𝑗𝑓 = 0
𝜕𝑡𝜌𝑃 + ∇ ⋅ ⃗𝑗𝑃 = 0 → 0 = ∇ ⋅ (−𝜕𝑡 ⃗𝑝 + ⃗𝑗𝑃 ) → ⃗𝑗𝑃 = 𝜕𝑡 ⃗𝑝

todo justify absence of constant field

2.2.7 Magnetization

Single Magnetic Moment (Limit of an Elementary Loop)

Using the Biot-Savart law, specialized for a conductor carrying current 𝑖( ⃗𝑟0)

𝑑 ⃗𝑏( ⃗𝑟) = − 𝜇
4𝜋

⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 × ⃗𝑗( ⃗𝑟0)𝑑𝑉0 =

= − 𝜇
4𝜋 𝑖( ⃗𝑟0) ⃗𝑟 − ⃗𝑟0

| ⃗𝑟 − ⃗𝑟0|3 × ̂⃗𝑡( ⃗𝑟0)𝑑ℓ0 ,

we can calculate the magnetic field generated by a loop with path ℓ0 = 𝜕𝑆0 using the PSCE

⃗𝑏( ⃗𝑟) = ∮
ℓ0

𝑑𝑏⃗( ⃗𝑟0) =

= − 𝜇
4𝜋 𝑖0 ∮

⃗𝑟0∈ℓ0

⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 × ̂⃗𝑡( ⃗𝑟0) =

= 𝜇
4𝜋 𝑖0 ∫

⃗𝑟0∈𝑆0

̂𝑛⃗( ⃗𝑟0) ⋅ ∇ ⃗𝑟0
( ⃗𝑟 − ⃗𝑟0

| ⃗𝑟 − ⃗𝑟0|3 )

The field generated by an elementary loop of surface 𝑆0 with normal ̂𝑛⃗0, using the mean value theorem, is

⃗𝑏( ⃗𝑟) = 𝜇
4𝜋 𝑖0𝑆0 ̂𝑛⃗0 ⋅ ∇ ⃗𝑟0

( ⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 ) + 𝑜(𝑆0)

and as 𝑖0 → ∞, 𝑆0 → 0 such that 𝑀⃗0 ∶= 𝑖0𝑆0 ̂𝑛⃗0

⃗𝑏( ⃗𝑟) = 𝜇
4𝜋 𝑀⃗0 ⋅ ∇ ⃗𝑟0

( ⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 )

= − 𝜇0
4𝜋 [( ⃗𝑟 − ⃗𝑟0)( ⃗𝑟 − ⃗𝑟0)

| ⃗𝑟 − ⃗𝑟0|5 ⋅ 𝑀⃗0 − 𝑀⃗0
| ⃗𝑟 − ⃗𝑟0|3 ] =

= − 𝜇0
4𝜋 [( ⃗𝑟 − ⃗𝑟0) ⊗ ( ⃗𝑟 − ⃗𝑟0)

| ⃗𝑟 − ⃗𝑟0|5 − 𝕀
| ⃗𝑟 − ⃗𝑟0|3 ] ⋅ 𝑀⃗0 .

todo Analogy with the electric field produced by a distribution of dipoles.
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Details

∮
𝜕𝑆

𝐴 𝑡𝑖 = ∫
𝑆

𝜀𝑖𝑗𝑘 𝑛𝑗 𝜕𝑘𝐴 , ∮
𝜕𝑆

𝐴 ̂⃗𝑡 = ∫
𝑆

̂𝑛⃗ × ∇𝐴

∮
⃗𝑟0∈ℓ0

⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 × ̂⃗𝑡( ⃗𝑟0)𝑑ℓ0 = ∮

⃗𝑟0∈ℓ0

𝜀𝑖𝑗𝑘
𝑟𝑗 − 𝑟0,𝑗
| ⃗𝑟 − ⃗𝑟0|3 𝑡𝑘 =

= ∫
⃗𝑟0∈𝑆0

𝜀𝑘𝑟𝑠𝑛𝑟𝜕0
𝑠 (𝜀𝑖𝑗𝑘

𝑟𝑗 − 𝑟0,𝑗
| ⃗𝑟 − ⃗𝑟0|3 ) =

= ∫
⃗𝑟0∈𝑆0

(𝛿𝑖𝑟𝛿𝑗𝑠 − 𝛿𝑖𝑠𝛿𝑗𝑟) 𝑛𝑟𝜕0
𝑠 ( 𝑟𝑗 − 𝑟0,𝑗

| ⃗𝑟 − ⃗𝑟0|3 ) =

= ∫
⃗𝑟0∈𝑆0

⎧{
⎨{⎩

𝑛𝑖 𝜕0
𝑗 ( 𝑟𝑗 − 𝑟0,𝑗

| ⃗𝑟 − ⃗𝑟0|3 )
⏟⏟⏟⏟⏟⏟⏟

=0

−𝑛𝑗𝜕0
𝑖 ( 𝑟𝑗 − 𝑟0,𝑗

| ⃗𝑟 − ⃗𝑟0|3 )
⎫}
⎬}⎭

=

= − ∫
⃗𝑟0∈𝑆0

𝑛𝑗𝜕0
𝑖 ( 𝑟𝑗 − 𝑟0,𝑗

| ⃗𝑟 − ⃗𝑟0|3 ) .

Continuous Distribution of Magnetic Moment

To calculate the magnetic field generated by a volume distribution of magnetic moment, we can proceed in analogy with
what was done to calculate the electric field generated by a distribution of dipoles

⃗𝑏( ⃗𝑟) = ∫
⃗𝑟0∈𝑉0

𝜇0
4𝜋 𝑚⃗( ⃗𝑟0) ⋅ ∇ ⃗𝑟0

( ⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 ) =

= ∮
⃗𝑟0∈𝜕𝑉0

𝜇0
4𝜋

⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3

̂𝑛⃗( ⃗𝑟0) ⋅ 𝑚⃗( ⃗𝑟0) + ∫
⃗𝑟0∈𝑉0

𝜇0
4𝜋

⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 (−∇ ⃗𝑟0

⋅ 𝑚⃗( ⃗𝑟0)) ,

but without obtaining an analogy with the expression of the Biot-Savart law, which involves the cross product between
the term ⃗𝑟− ⃗𝑟0

| ⃗𝑟− ⃗𝑟0|3 and a current density ⃗𝑗( ⃗𝑟0).
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Details

We can rewrite

∮
⃗𝑟0∈𝜕𝑉0

⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 × ( ̂𝑛⃗( ⃗𝑟0) × 𝑚⃗( ⃗𝑟0))

= ∮
⃗𝑟0∈𝜕𝑉0

𝜀𝑖𝑗𝑘
𝑟𝑗 − 𝑟0,𝑗
| ⃗𝑟 − ⃗𝑟0|3 𝜀𝑘𝑟𝑠𝑛𝑟𝑚𝑠 =

= ∫
⃗𝑟0∈𝑉0

(𝛿𝑖𝑟𝛿𝑗𝑠 − 𝛿𝑖𝑠𝛿𝑗𝑟) 𝜕0
𝑟 ( 𝑟𝑗 − 𝑟0,𝑗

| ⃗𝑟 − ⃗𝑟0|3 𝑚𝑠) =

= ∫
⃗𝑟0∈𝑉0

{𝜕0
𝑖 ( 𝑟𝑗 − 𝑟0,𝑗

| ⃗𝑟 − ⃗𝑟0|3 𝑚𝑗) − 𝜕0
𝑗 ( 𝑟𝑗 − 𝑟0,𝑗

| ⃗𝑟 − ⃗𝑟0|3 𝑚𝑖)} =

= ∫
⃗𝑟0∈𝑉0

⎧{
⎨{⎩

𝜕0
𝑖

𝑟𝑗 − 𝑟0,𝑗
| ⃗𝑟 − ⃗𝑟0|3 𝑚𝑗 + 𝑟𝑗 − 𝑟0,𝑗

| ⃗𝑟 − ⃗𝑟0|3 𝜕0
𝑖 𝑚𝑗 − 𝑟𝑗 − 𝑟0,𝑗

| ⃗𝑟 − ⃗𝑟0|3 𝜕0
𝑗 𝑚𝑖 − 𝜕0

𝑗
𝑟𝑗 − 𝑟0,𝑗
| ⃗𝑟 − ⃗𝑟0|3⏟⏟⏟⏟⏟

=0

𝑚𝑖

⎫}
⎬}⎭

=

= ∫
⃗𝑟0∈𝑉0

{𝜕0
𝑖

𝑟𝑗 − 𝑟0,𝑗
| ⃗𝑟 − ⃗𝑟0|3 𝑚𝑗 + 𝜀𝑖𝑗𝑘𝜀𝑘𝑟𝑠

𝑟𝑗 − 𝑟0,𝑗
| ⃗𝑟 − ⃗𝑟0|3 𝜕0

𝑟 𝑚𝑠} =

= ∫
⃗𝑟0∈𝑉0

{∇ ⃗𝑟0

⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 ⋅ 𝑚⃗( ⃗𝑟0) + ⃗𝑟 − ⃗𝑟0

| ⃗𝑟 − ⃗𝑟0|3 × (∇ ⃗𝑟0
× 𝑚⃗( ⃗𝑟0))} =

using vector calculus identities,

⃗𝑎 × ( ⃗𝑏 × ⃗𝑐) = 𝜀𝑖𝑗𝑘𝑎𝑗𝜀𝑘𝑟𝑠𝑏𝑟𝑐𝑠 =
= (𝛿𝑖𝑟𝛿𝑗𝑠 − 𝛿𝑖𝑠𝛿𝑗𝑟)𝑎𝑗𝑏𝑟𝑐𝑠 =
= 𝑎𝑗𝑏𝑖𝑐𝑗 − 𝑐𝑖𝑏𝑗𝑎𝑗 = ⃗𝑏( ⃗𝑎 ⋅ ⃗𝑐) − ⃗𝑐( ⃗𝑎 ⋅ ⃗𝑏)

𝑎𝑗𝜕𝑖𝑚𝑗 − 𝑎𝑗𝜕𝑗𝑚𝑖 = (𝛿𝑖𝑟𝛿𝑗𝑠 − 𝛿𝑖𝑠𝛿𝑗𝑟)𝑎𝑗𝜕𝑟𝑚𝑠 =
= 𝜀𝑖𝑗𝑘𝜀𝑘𝑟𝑠𝑎𝑗𝜕𝑟𝑚𝑠 =
= ⃗𝑎 × (∇ × 𝑚⃗)

The magnetic field generated by a distribution of magnetic moment can therefore be rewritten as

⃗𝑏( ⃗𝑟) = ∫
⃗𝑟0∈𝑉0

𝜇0
4𝜋 𝑚⃗( ⃗𝑟0) ⋅ ∇ ⃗𝑟0

( ⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 ) =

= − 𝜇0
4𝜋 ∮

⃗𝑟0∈𝜕𝑉0

⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 × (− ̂𝑛⃗( ⃗𝑟0) × 𝑚⃗( ⃗𝑟0))⏟⏟⏟⏟⏟⏟⏟⏟⏟

⃗𝑗𝑠
𝑀

− 𝜇0
4𝜋 ∫

⃗𝑟0∈𝑉0

⃗𝑟 − ⃗𝑟0
| ⃗𝑟 − ⃗𝑟0|3 × (∇ ⃗𝑟0

× 𝑚⃗( ⃗𝑟0))⏟⏟⏟⏟⏟⏟⏟
⃗𝑗𝑀

,

having defined the surface magnetization current density ⃗𝑗𝑠
𝑀 and the volume magnetization current density ⃗𝑗𝑀 as the

intensities of the distributed singularities, in analogy with the expression of the Biot-Savart law.

2.2. Electromagnetism in Matter 17
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Reformulation of Maxwell’s Equations and Charge Continuity

The Ampère-Maxwell law can be rewritten

∇ × 𝑏⃗ − 𝜇0𝜀0𝜕𝑡 ⃗𝑒 = 𝜇0 ⃗𝑗
∇ × 𝑏⃗ − 𝜇0𝜕𝑡 ( ⃗𝑑 − ⃗𝑝) = 𝜇0 ( ⃗𝑗𝑓 + ⃗𝑗𝑃 + ⃗𝑗𝑀)
∇ × ( ⃗𝑏 − 𝜇0𝑚⃗)⏟⏟⏟⏟⏟

=∶𝜇0ℎ⃗

−𝜇0𝜕𝑡 ⃗𝑑 + 𝜇0 (𝜕𝑡 ⃗𝑝 − ⃗𝑗𝑃 )⏟⏟⏟⏟⏟
=0⃗

= 𝜇0 ⃗𝑗𝑓

∇ × ℎ⃗ − 𝜕𝑡 ⃗𝑑 = ⃗𝑗𝑓

From the continuity equation of electric current,

𝜕𝑡𝜌 + ∇ ⋅ ⃗𝑗 = 0 ,

we derive the continuity equation for magnetization charges

0 = 𝜕𝑡𝜌𝑀 + ∇ ⋅ ⃗𝑗𝑀 =
= 𝜕𝑡𝜌𝑀 + ∇ ⋅ ∇ × 𝑚⃗⏟⏟⏟⏟⏟

≡0⃗
.

2.3 Galileian relativity in electromagnetism

18 Chapter 2. Principles of Classical Electromagnetism



CHAPTER

THREE

ELECTROMAGNETIC WAVES

3.1 Electromagnetic Potentials

It is possible to demonstrate that the system of Maxwell’s equations and the charge continuity equation is overdetermined.
Specifically, it can be shown that, given the distribution of charge and current density—considered as the generating causes
of the electric field—and the constitutive laws of the material, four unknowns are sufficient to define the six unknowns
(three components for two vector fields) of the problem. Therefore, the problem can be formulated in terms of a scalar
potential 𝜑 and a vector potential ⃗𝑎, along with a gauge condition that eliminates the remaining two arbitrary factors
(irrelevant for the calculation of physical fields).

3.1.1 Vector Potential and Scalar Potential

Starting from Maxwell’s equations, the potentials of the electromagnetic field can be defined. Using Gauss’s law for the
magnetic field, the vector potential ⃗𝑎( ⃗𝑟, 𝑡) can be introduced,

0 = ∇ ⋅ ⃗𝑏 → ⃗𝑏 = ∇ × ⃗𝑎 ,

since the divergence of a curl is identically zero. Introducing this relationship into the Faraday-Neumann-Lenz equation,
assuming sufficient regularity of the fields to allow the inversion of the order of derivatives,

0 = ∇ × ⃗𝑒 + 𝜕𝑡 ⃗𝑏 = ∇ × ⃗𝑒 + 𝜕𝑡∇ × ⃗𝑎 = ∇ × ( ⃗𝑒 + 𝜕𝑡 ⃗𝑎) → ⃗𝑒 + 𝜕𝑡 ⃗𝑎 = −∇𝜑 ,

since the curl of a gradient is identically zero. The “physical” quantities of the electric field ⃗𝑒( ⃗𝑟, 𝑡) and the magnetic field
⃗𝑏( ⃗𝑟, 𝑡) can therefore be written using the electromagnetic potentials as

⃗𝑒 = −∇𝜑 − 𝜕𝑡 ⃗𝑎 (𝑎)
⃗𝑏 = ∇ × ⃗𝑎 (𝑏)

(3.1)

3.1.2 Gauge Conditions

The potentials are defined up to a gauge condition, an additional condition that eliminates any arbitrariness in the definition.
For example, the vector potential is defined up to the gradient of a scalar function, since∇×∇𝑓 ≡ ⃗0, and thus the potential
̃⃗𝑎 = ⃗𝑎 + ∇𝑓 produces the same magnetic field ⃗𝑏

∇ × ̃⃗𝑎 = ∇ × ( ⃗𝑎 + ∇𝑓) = ∇ × ⃗𝑎 .

Lorentz Gauge Condition. For reasons that will become clearer in the section on electromagnetic waves, a convenient
gauge condition is

∇ ⋅ ⃗𝑎 + 1
𝑐2 𝜕𝑡𝜑 = 0 (3.2)

19
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Coulomb Gauge Condition.

∇ ⋅ ⃗𝑎 = 0

3.2 Wave Equations in Electromagnetism

Wave equations for physical quantities in electromagnetism are derived from the governing equations for linear local
isotropic homogeneous (𝜀, 𝜇 uniform, not function of space) media with constitutive equations

⃗𝑑 = 𝜀 ⃗𝑒 , ⃗𝑏 = 𝜇ℎ⃗ ,

using vector identity

Δ ⃗𝑣 = ∇(∇ ⋅ ⃗𝑣) − ∇ × ∇ × ⃗𝑣 .

If some of the assumptions made above is not true, slight modifications and extra terms in the equations are likely to
appear during the manipulation of the equations done below.

3.2.1 Electromagnetic Potentials

Vector potential

Wave equation for the vector potential,

⃗𝑏 = ∇ × ⃗𝑎 ,

is derived taking the curl of its definition,

⃗0 = ∇ × ∇ × ⃗𝑎 − ∇ × ⃗𝑏 = (1.𝑎)
= −Δ ⃗𝑎 + ∇(∇ ⋅ ⃗𝑎) − 𝜇∇ × ℎ⃗ = (2)
= −Δ ⃗𝑎 + ∇(∇ ⋅ ⃗𝑎) − 𝜇(𝜕𝑡 ⃗𝑑 + ⃗𝑗𝑓) = (1.𝑏)
= −Δ ⃗𝑎 + ∇(∇ ⋅ ⃗𝑎) − 𝜇(𝜀𝜕𝑡 ⃗𝑒 + ⃗𝑗𝑓) = (3)
= −Δ ⃗𝑎 + ∇(∇ ⋅ ⃗𝑎) − 𝜇𝜀(−𝜕𝑡∇𝜑 − 𝜕𝑡𝑡 ⃗𝑎) + 𝜇 ⃗𝑗𝑓 =

= −Δ ⃗𝑎 + ∇(∇ ⋅ ⃗𝑎) + 1
𝑐2 𝜕𝑡∇𝜑 + 1

𝑐2 𝜕𝑡𝑡 ⃗𝑎 − 𝜇 ⃗𝑗𝑓

and using (1) the constitutive law for homogeneous isotropic linear media, (2) Ampére-Maxwell’s equation, (3), and (4)
the definition of the electric field (3.1)(a) in terms of the potentials. Using the Lorentz gauge condition (3.2)

∇ ⋅ ⃗𝑎 + 1
𝑐2 𝜕𝑡𝜑 = 0 ,

wave equation for the vector potential reads,

1
𝑐2 𝜕𝑡𝑡 ⃗𝑎 − Δ ⃗𝑎 = 𝜇 ⃗𝑗 . (3.3)

20 Chapter 3. Electromagnetic waves
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Scalar potential

Wave equation for the the scalar potential, 𝜑( ⃗𝑟, 𝑡), can be derived taking the time derivative of Lorentz’s gauge condition,

0 = 𝜕𝑡 ( 1
𝑐2 𝜕𝑡𝜑 + ∇ ⋅ ⃗𝑎) =

= 1
𝑐2 𝜕𝑡𝑡𝜑 + ∇ ⋅ 𝜕𝑡 ⃗𝑎 = (1)

= 1
𝑐2 𝜕𝑡𝑡𝜑 − ∇ ⋅ ∇𝜑 − ∇ ⋅ ⃗𝑒 = (2)

= 1
𝑐2 𝜕𝑡𝑡𝜑 − Δ𝜑 − 𝜌𝑓

𝜀 ,

using (1) the definition (3.1)(a) of the electric field as a function of the potentials, and (2) Gauss’ law for the electric field,

1
𝑐2 𝜕𝑡𝑡𝜑 − Δ𝜑 = 𝜌𝑓

𝜀 . (3.4)

3.2.2 Electric Field and Magnetic Field

Exploiting the linearity - obviously, if the problem is linear - wave equations for the electric and the magnetic field can be
readily derived from applying the wave operator

□ ∶= 1
𝑐2 𝜕𝑡𝑡 − Δ ,

to the (1) definitions (3.1) of the electric and the magnetic fields as functions of the potentials, (2) swapping the order of
the operator □ with 𝜕𝑡 and ∇1, and (3) using the expressions of the wave equations for the vector potential (3.3) and the
scalar potential (3.4).

Electric field

□ ⃗𝑒 = (1)
= □(−∇𝜑 − 𝜕𝑡 ⃗𝑎) = (2)
= −∇□𝜑 − 𝜕𝑡□ ⃗𝑎 = (3)
= −∇𝜌

𝜀 − 𝜇𝜕𝑡 ⃗𝑗 .

Magnetic field

□ ⃗𝑏 = (1)
= □∇ × ⃗𝑎 = (2)
= ∇ × □ ⃗𝑎 = (3)
= 𝜇∇ × ⃗𝑗

1 □𝜕𝑘𝑓 = ( 1
𝑐2 𝜕𝑡𝑡 − 𝜕𝑖𝑖) 𝜕𝑘𝑓 = 𝜕𝑘 ( 1

𝑐2 𝜕𝑡𝑡 − 𝜕𝑖𝑖) 𝑓 = 𝜕𝑘 □𝑓.

3.2. Wave Equations in Electromagnetism 21
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3.3 Plane Electromagnetic Waves

Harmonic decomposition of the electromagnetic field. The EM field can be written as the superposition of plane waves
(Fourier decomposition)

e(r, 𝑡) = E𝑒𝑖(k⋅r−𝜔𝑡)

b(r, 𝑡) = B𝑒𝑖(k⋅r−𝜔𝑡)

Introducing this decomposition into Maxwell’s equations with no free charge and current

⎧{{
⎨{{⎩

∇ ⋅ d = 0
∇ × e + 𝜕𝑡b = 0
∇ ⋅ b = 0
∇ × h − 𝜕𝑡d = 0

we obtain

⎧{{
⎨{{⎩

𝑖k ⋅ D = 0
𝑖k × E − 𝑖𝜔B = 0
𝑖k ⋅ B = 0
𝑖k × H + 𝑖𝜔D = 0

→

⎧{{{
⎨{{{⎩

𝑖𝜀k ⋅ E = 0
𝑖k × E − 𝑖𝜔B = 0
𝑖k ⋅ B = 0
𝑖 1
𝜇k × B + 𝑖𝜔𝜀E = 0

• From Gauss’ equations for the electric and the magnetic field

k ⟂ E , k ⟂ B

• From Faraday and Ampère-Maxwell equations

B = k
𝜔 × E

E = − 1
𝜇𝜀

k
𝜔 × B

It follows that:
• k, E, B are orthogonal “RHS” set of vectors
• Relations between E, B, and k and the speed of light

B = 1
𝑐 k̂ × E

E = −𝑐 k̂ × B

hold, with speed of light 𝑐 = 1√𝜇𝜀 = 𝜔
|k| , and unit vector k̂ = k

|k| .

Proof using vector algebra identity

Recalling 𝑐2 = 1
𝜇𝜀 and

B = k
𝜔 × E = k

𝜔 × [−𝑐2 k
𝜔 × B] = −𝑐2|k|2

𝜔2 k̂ × (k̂ × B)

22 Chapter 3. Electromagnetic waves
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Vector identity

a × (b × c) = 𝜀𝑖𝑗𝑘𝑎𝑗𝜀𝑘𝑙𝑚𝑏𝑙𝑐𝑚 = (𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙) 𝑎𝑗 𝑏𝑙 𝑐𝑚 = 𝑏𝑖𝑎𝑚𝑐𝑚 − 𝑐𝑖𝑎𝑚𝑏𝑚 = (a ⋅ c)b − (a ⋅ b)c

applied to k̂ × (k̂ × B) gives

k̂ × (k̂ × B) = (k̂Ḃ)⏟
=0 since k ⟂ B

k̂ − (k̂ ⋅ k̂)⏟
=1

B = −B ,

and the original relation gives

B = B𝑐2|k|2
𝜔2 ,

and the relation between pulsation 𝜔, wave vector k and speed of light (EM radiation) 𝑐,

𝑐 = 𝜔
|k| .

3.3.1 Snell’s Law at an Interface

Snell’s law is derived here assuming isotropic linear media, so that

{d(r, 𝑡) = 𝜀e(r, 𝑡)
b(r, 𝑡) = 𝜇h(r, 𝑡)

and for harmonic plane EM waves

{e(r, 𝑡) = E𝑎 𝑒𝑖(k𝑎⋅r−𝜔𝑡)

b(r, 𝑡) = B𝑎 𝑒𝑖(k𝑎⋅r−𝜔𝑡)

B𝑎 = 1
𝑐 k̂𝑎 × E𝑎

E𝑎 = −𝑐 k̂𝑎 × B𝑎

being index 𝑎 representing the media involved: 𝑎 = 1 for the medium with incident and reflected waves, 𝑎 = 2 for the
medium with the refracted wave.
Jump conditions of electromagnetic field at an interface with no charge or current surface density are given by conditions
(2.2),

⎧{{{
⎨{{{⎩

𝜀1𝑒𝑛,1 = 𝜀2𝑒𝑛,2
𝑒𝑡𝛼,1 = 𝑒𝑡𝛼,2 , 𝛼 = 1 ∶ 2
𝑏𝑛,1 = 𝑏𝑛,2
1
𝜇1

𝑏𝑡𝛼,1 = 1
𝜇2

𝑏𝑡𝛼,2 , 𝛼 = 1 ∶ 2

Definition of some vectors: n̂ unit normal vector, k wave vector, b̂ = n̂ × k
|n̂ × k| (singular only for normal incident ray),

̂c = b̂ × k
|b̂ × k|

, ̂t = b̂ × n̂
|b̂ × n̂|

Incident angle 𝜃1,𝑖 is the angle between n̂ and k, s.t. n̂ × k = b̂ 𝑘 sin 𝜃1,𝑖.

{k̂ = cos 𝜃1,𝑖n̂ + sin 𝜃1,𝑖 ̂t
̂c = − sin 𝜃1,𝑖n̂ + cos 𝜃1,𝑖 ̂t , {n̂ = cos 𝜃1,𝑖k̂ − sin 𝜃1,𝑖 ̂c

̂t = sin 𝜃1,𝑖k̂ + cos 𝜃1,𝑖 ̂c

3.3. Plane Electromagnetic Waves 23
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The electromagnetic field can be written as

E = 𝐸𝑏b̂ + 𝐸𝑐 ̂c =
= 𝐸𝑏b̂ − 𝐸𝑐 sin 𝜃1,𝑖n̂ + 𝐸𝑐 cos 𝜃1,𝑖 ̂t

B = 𝐵𝑏b̂ + 𝐵𝑐 ̂c =

= 𝐸𝑐
𝑐 b̂ − 𝐸𝑏

𝑐 ̂c =

= 𝐸𝑐
𝑐 b̂ + 𝐸𝑏

𝑐 sin 𝜃1,𝑖n̂ − 𝐸𝑏
𝑐 cos 𝜃1,𝑖 ̂t .

so that jump relations become

⎧{
⎨{⎩

𝑏 ∶ 𝐸𝑏,1 = 𝐸𝑏,2
𝑛 ∶ …
𝑡 ∶ …

,
⎧{
⎨{⎩

𝑏 ∶ …
𝑛 ∶ 𝐸𝑏,1

𝑐1
sin 𝜃1,𝑖 = 𝐸𝑏,2

𝑐2
sin 𝜃2,𝑖

𝑡 ∶ …

thus Snell’s law follows
sin 𝜃1,𝑖
sin 𝜃2,𝑡

= 𝑐2
𝑐1

= 𝑛1
𝑛2

.

Incident, Reflected, and Refracted Wave. The wave at the interface in medium 1 has the contribution of the incoming
incident wave and the reflected one.

e1(r, 𝑡) = e𝑖(r, 𝑡) + e𝑟(r, 𝑡) =
= E𝑖𝑒𝑖(k𝑖⋅r−𝜔𝑡) + E𝑟𝑒𝑖(k𝑟⋅r−𝜔𝑡) =
= (E𝑖𝑒𝑖k𝑖⋅r + E𝑟𝑒𝑖k𝑟⋅r) 𝑒−𝑖𝜔𝑡

with

k𝑖 = 𝑘𝑖,𝑛n̂ + 𝑘𝑖,𝑡 ̂t
k𝑟 = 𝑘𝑟,𝑛n̂ + 𝑘𝑟,𝑡 ̂t

At the interface, r𝑠 ⋅ n̂ = 0, and thus

e1(r𝑠, 𝑡) = (E𝑖𝑒𝑖𝑘𝑖,𝑡𝑥𝑡 + E𝑟𝑒𝑖𝑘𝑟,𝑡𝑥𝑡) 𝑒−𝑖𝜔𝑡

e2(r𝑠, 𝑡) = E𝑡𝑒𝑖𝑘𝑡,𝑡𝑥𝑡𝑒−𝑖𝜔𝑡

In order for the boundary conditions to be satisfied at all the points of the interface at each time,

𝑘𝑖,𝑡 = 𝑘𝑟,𝑡 = 𝑘𝑡,𝑡 .

Exploiting the relation between the pulsation, the wave-length, and the speed of light in media, 𝑐𝑎 = 𝜔
|k𝑎| = 𝑐

𝑛𝑎
,

|k𝑖| = |k𝑟| → 𝑘𝑟,𝑛 = −𝑘𝑖,𝑛

|k2|
|k1| = 𝑐1

𝑐2

𝑘2
𝑡,𝑡 + 𝑘2

𝑡,𝑛
𝑘2

𝑖,𝑡 + 𝑘2
𝑖,𝑛

= 𝑐2
1

𝑐2
2

𝑘𝑖,𝑛 = |k𝑖| cos 𝜃𝑖
𝑘𝑟,𝑛 = −|k𝑟| cos 𝜃𝑟
𝑘𝑡,𝑛 = |k𝑡| cos 𝜃𝑡

,
𝑘𝑖,𝑡 = |k𝑖| sin 𝜃𝑖
𝑘𝑟,𝑡 = |k𝑟| sin 𝜃𝑟
𝑘𝑡,𝑡 = |k𝑡| sin 𝜃𝑡
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⎧{{{{
⎨{{{{⎩

𝐸𝑛 ∶ 𝜀1 (𝐸𝑖,𝑐 sin 𝜃𝑖 + 𝐸𝑟,𝑐 sin 𝜃𝑟) = 𝜀2𝐸𝑡,𝑐 sin 𝜃𝑡
𝐸𝑡 ∶ 𝐸𝑖,𝑐 cos 𝜃𝑖 − 𝐸𝑟,𝑐 cos 𝜃𝑟 = 𝐸𝑡,𝑐 cos 𝜃𝑡
𝐸𝑏 ∶ 𝐸𝑖,𝑏 + 𝐸𝑟,𝑏 = 𝐸𝑡,𝑏
𝐵𝑛 ∶ 𝐵𝑖,𝑐 sin 𝜃𝑖 + 𝐵𝑟,𝑐 sin 𝜃𝑟 = 𝐵𝑡,𝑐 sin 𝜃𝑡
𝐵𝑡 ∶ 1

𝜇1
(𝐵𝑖,𝑐 cos 𝜃𝑖 − 𝐵𝑟,𝑐 cos 𝜃𝑟) = 1

𝜇2
𝐵𝑡,𝑐 cos 𝜃𝑡

𝐵𝑏 ∶ 1
𝜇1

(𝐵𝑖,𝑏 + 𝐵𝑟,𝑏) = 1
𝜇2

𝐵𝑡,𝑏

Writing the magnetic field as a function of the wave-vector and the magnetic field, it’s possible to write 2 decoupled
systems of equations

⎧{
⎨{⎩

𝐸𝑛 ∶ 𝜀1 (𝐸𝑖,𝑐 sin 𝜃𝑖 + 𝐸𝑟,𝑐 sin 𝜃𝑟) = 𝜀2𝐸𝑡,𝑐 sin 𝜃𝑡
𝐸𝑡 ∶ 𝐸𝑖,𝑐 cos 𝜃𝑖 − 𝐸𝑟,𝑐 cos 𝜃𝑟 = 𝐸𝑡,𝑐 cos 𝜃𝑡
𝐵𝑏 ∶ 1

𝜇1
( 𝐸𝑖,𝑐

𝑐1
+ 𝐸𝑟,𝑐

𝑐1
) = 1

𝜇2

𝐸𝑡,𝑐
𝑐2

⎧{
⎨{⎩

𝐸𝑏 ∶ 𝐸𝑖,𝑏 + 𝐸𝑟,𝑏 = 𝐸𝑡,𝑏
𝐵𝑛 ∶ 𝐸𝑖,𝑏

𝑐1
sin 𝜃𝑖 + 𝐸𝑟,𝑏

𝑐1
sin 𝜃𝑟 = 𝐸𝑡,𝑏

𝑐2
sin 𝜃𝑡

𝐵𝑡 ∶ 1
𝜇1

( 𝐸𝑖,𝑏
𝑐1

cos 𝜃𝑖 − 𝐸𝑟,𝑏
𝑐1

cos 𝜃𝑟) = 1
𝜇2

𝐸𝑡,𝑏
𝑐2

cos 𝜃𝑡

The equations 𝐸𝑛 and 𝐵𝑏 are equivalent; 𝐸𝑏 and 𝐵𝑛 are equivalent as well, because of Snell’s law. Thus, defining

𝑟𝑐 ∶= 𝐸𝑟,𝑐
𝐸𝑖,𝑐

𝑡𝑐 ∶= 𝐸𝑡,𝑐
𝐸𝑖,𝑐

,
𝑟𝑏 ∶= 𝐸𝑟,𝑏

𝐸𝑖,𝑏

𝑡𝑏 ∶= 𝐸𝑡,𝑏
𝐸𝑖,𝑏

and 𝛼𝑖 ∶= 1
𝜇𝑖𝑐𝑖

. These systems of equations can be written as two uncoupled linear systems of equations,

(for P-polarization todo *change index from 𝑐 to 𝑝; for S-polarization todo change index from 𝑏 to 𝑠)

{𝐸𝑡 ∶ cos 𝜃𝑖 − cos 𝜃𝑟 𝑟𝑐 = cos 𝜃𝑡 𝑡𝑐
𝐵𝑏 ∶ 𝛼1 + 𝛼1 𝑟𝑐 = 𝛼2 𝑡𝑐

{𝐸𝑏 ∶ 1 + 𝑟𝑏 = 𝑡𝑏
𝐵𝑡 ∶ 𝛼1 cos 𝜃𝑖 − 𝛼1 cos 𝜃𝑟 𝑟𝑏 = 𝛼2 cos 𝜃𝑡 𝑡𝑏

Calling 𝜃𝑖 = 𝜃𝑟 = 𝜃1, 𝜃2 = 𝜃𝑡, these linear systems can be written using matrix formalism,

[−1 1
1 𝛼2

𝛼1
cos 𝜃2
cos 𝜃1

] [𝑟𝑏
𝑡𝑏

] = [1
1]

[ 1 cos 𝜃2
cos 𝜃1

−1 𝛼2
𝛼1

] [𝑟𝑐
𝑡𝑐

] = [1
1]

todo Analysis of the total reflection, forcing 𝑡𝑥 = 0. Check signs before

[ 1 cos 𝜃2
cos 𝜃1

−1 𝛼2
𝛼1

] [𝑟𝑐
𝑡𝑐

] = [1
1] → [𝑟𝑐

𝑡𝑐
] = 1

𝛼2
𝛼1

+ cos 𝜃2
cos 𝜃1

[
𝛼2
𝛼1

− cos 𝜃2
cos 𝜃1

1 1 ] [1
1] = [

𝛼2 cos 𝜃1−𝛼1 cos 𝜃2
𝛼2 cos 𝜃1+𝛼1 cos 𝜃22𝛼1 cos 𝜃1
𝛼2 cos 𝜃1+𝛼1 cos 𝜃2

]

[−1 1
1 𝛼2

𝛼1
cos 𝜃2
cos 𝜃1

] [𝑟𝑏
𝑡𝑏

] = [1
1] → [𝑟𝑏

𝑡𝑏
] = 1

− 𝛼2
𝛼1

cos 𝜃2
cos 𝜃1

− 1
[

𝛼2
𝛼1

cos 𝜃2
cos 𝜃1

−1
−1 −1] [1

1] = [
𝛼1 cos 𝜃1−𝛼2 cos 𝜃2
𝛼1 cos 𝜃1+𝛼2 cos 𝜃22𝛼1 cos 𝜃1
𝛼1 cos 𝜃1+𝛼2 cos 𝜃2

]

that can be recast with the wave impedance 𝑍,

𝛼1 = 1
𝜇1𝑐1

=
√𝜇1𝜀1

𝜇1
= √ 𝜀1

𝜇1
=∶ 1

𝑍1
,
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[𝑟𝑐
𝑡𝑐

] = [
𝑍1 cos 𝜃1−𝑍2 cos 𝜃2
𝑍1 cos 𝜃1+𝑍2 cos 𝜃22𝑍2 cos 𝜃1
𝑍1 cos 𝜃1+𝑍2 cos 𝜃2

]

[𝑟𝑏
𝑡𝑏

] = [
𝑍2 cos 𝜃1−𝑍1 cos 𝜃2
𝑍2 cos 𝜃1+𝑍1 cos 𝜃22𝑍2 cos 𝜃1
𝑍2 cos 𝜃1+𝑍1 cos 𝜃2

]

Energy Balance and Transmission Coefficients. Energy balance for a domain collapsing on the interface reduces to
power flux balance, namely

∮
𝜕𝑉

s ⋅ n̂ = 0 ,

with s = e × h the Poynting vector. For harmonic plane waves,

s(r, 𝑡) = e(r, 𝑡) × h(r, 𝑡) =

= 1
𝜇 [E𝑒𝑖(k⋅r−𝜔𝑡) + E∗𝑒−𝑖(k⋅r−𝜔𝑡)] × [B𝑒𝑖(k⋅r−𝜔𝑡) + B∗𝑒−𝑖(k⋅r−𝜔𝑡)] =

= 1
𝜇 [E × B 𝑒𝑖2(k⋅r−𝜔𝑡) + 𝑐.𝑐. ] + 1

𝜇 [E × B∗ + 𝑐.𝑐. ] =

= ⋯ + 1
𝜇E × (1

𝑐 k̂ × E)
∗

=

= ⋯ + 1
𝜇𝑐 (E ⋅ E∗) k̂ =

= ⋯ + 1
𝜇𝑐 |E|2k̂ . = ⋯ + 𝛼|E|2k̂ .

For each one of the two polarizations, the following holds (cos 𝜃 comes from the dot product 𝑘̂ ⋅ 𝑛̂ appearing in the surface
integral),

𝛼1 cos 𝜃1 = 𝛼1𝑟2
𝑥 cos 𝜃1 + 𝛼2𝑡2

𝑥 cos 𝜃2 ,

i.e., the sum of reflected and transmitted power equals the incident power.

Proof of the power balance, for P-polarization

todo Here 𝑃 is index 𝑐
Dividing by 𝛼1 cos 𝜃1

1
𝛼1 cos 𝜃1

(𝛼1𝑟2
𝑝 cos 𝜃1 + 𝛼2𝑡2

𝑝 cos 𝜃2) =

= (𝛼1 cos 𝜃1 − 𝛼2 cos 𝜃2)2

(𝛼1 cos 𝜃1 + 𝛼2 cos 𝜃2)2 + 𝛼2 cos 𝜃2
𝛼1 cos 𝜃1

(2𝛼1 cos 𝜃1)2

(𝛼1 cos 𝜃1 + 𝛼2 cos 𝜃2)2 =

= 1
(𝛼1 cos 𝜃1 + 𝛼2 cos 𝜃2)2 [𝛼2

1 cos2 𝜃1 − 2𝛼1𝛼2 cos 𝜃1 cos 𝜃2 + 𝛼2
2 cos2 𝜃2 + 4𝛼1𝛼2 cos 𝜃1 cos 𝜃2] =

= 1 .
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CHAPTER

FOUR

FORCE, MOMENTS, ENERGY AND MOMENTUM IN
ELECTROMAGNETISM

In this section, forces and moments on charges immersed in an electromagnetic field and the energy and momentum of
the electromagnetic field are discussed.
Total energy and momentum of a system involving electromagnetic phenomena has contributions from charges, currents
and the electromagnetic field.
Forces, moments and power. Forces and moments acting of elementary charge systems immersed in an electromagnetic
field are evaluated and power of these actions are riscussed.
Energy and momentum balance equations of the electromagnetic field. Energy balance equation of the electromagnetic
field

4.1 Force, moment, and power on elementary charge distributions

4.1.1 Force, moment and power on a point electric charge

Point electric charge with charge 𝑞 in a point ⃗𝑟𝑃 (𝑡) at time 𝑡 where electromagnetic field is ⃗𝑒( ⃗𝑟, 𝑡), ⃗𝑏( ⃗𝑟, 𝑡):
• Lorentz’s force

⃗𝐹 = 𝑞 ( ⃗𝑒( ⃗𝑟𝑃 (𝑡), 𝑡) − ⃗𝑏( ⃗𝑟𝑃 (𝑡), 𝑡) × ⃗𝑣𝑃 (𝑡)) ,

• zero moment, since it has no dimension (and assumed uniform or symmetric or… distribution of electric charge)
• power

𝑃 = ⃗𝑣𝑃 (𝑡) ⋅ ⃗𝐹 =
= ⃗𝑣𝑃 (𝑡) ⋅ 𝑞 ( ⃗𝑒( ⃗𝑟𝑃 (𝑡), 𝑡) − ⃗𝑏( ⃗𝑟𝑃 (𝑡), 𝑡) × ⃗𝑣𝑃 (𝑡)) = 𝑞 ⃗𝑣𝑃 (𝑡) ⋅ ⃗𝑒( ⃗𝑟𝑃 (𝑡), 𝑡) .

4.1.2 Force, moment and power on a electric dipole

Electric dipole with center ⃗𝑟𝐶(𝑡), axis ⃗ℓ, so that the positive charge 𝑞 is in 𝑃+ = 𝐶 +
⃗ℓ

2 and the negative charge is in

𝑃− = 𝐶 −
⃗ℓ

2 , with 𝑞 → +∞, | ⃗ℓ| → 0, s.t. 𝑞| ⃗ℓ| = | ⃗𝑑| finite.

Kinematics and expansion of the field

⃗𝑣± = ⃗𝑣𝐶 ± 𝜔⃗ ×
⃗ℓ

2

27
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⃗𝑒(𝑃±) = ⃗𝑒 (𝐶 ±
⃗ℓ

2) = ⃗𝑒(𝐶) ±
⃗ℓ

2 ⋅ ∇ ⃗𝑒(𝐶) + 𝑜(| ⃗ℓ|)

⃗𝑏(𝑃±) = ⃗𝑏 (𝐶 ±
⃗ℓ

2) = ⃗𝑏(𝐶) ±
⃗ℓ

2 ⋅ ∇ ⃗𝑏(𝐶) + 𝑜(| ⃗ℓ|)

Net force.
⃗𝐹 = ⃗𝐹+ + ⃗𝐹− =
= 𝑞 [ ⃗𝑒(𝑃+) − ⃗𝑏(𝑃+) × ⃗𝑣+] − 𝑞 [ ⃗𝑒(𝑃−) − ⃗𝑏(𝑃−) × ⃗𝑣−] =

= 𝑞 [ ⃗𝑒𝐶 +
⃗ℓ

2 ⋅ ∇ ⃗𝑒𝐶 − ( ⃗𝑏𝐶 +
⃗ℓ

2 ⋅ ∇ ⃗𝑏𝐶) × ( ⃗𝑣𝐶 + 𝜔⃗ ×
⃗ℓ

2)] +

− 𝑞 [ ⃗𝑒𝐶 −
⃗ℓ

2 ⋅ ∇ ⃗𝑒𝐶 − ( ⃗𝑏𝐶 −
⃗ℓ

2 ⋅ ∇ ⃗𝑏𝐶) × ( ⃗𝑣𝐶 − 𝜔⃗ ×
⃗ℓ

2)] =

= 𝑞 ⃗ℓ ⋅ ∇ ⃗𝑒(𝐶) − (𝑞 ⃗ℓ ⋅ ∇ ⃗𝑏(𝐶)) × ⃗𝑣𝐶 + 𝑏⃗(𝐶) × (𝜔⃗ × 𝑞 ⃗ℓ) + 𝑜(| ⃗ℓ|)

Net moment, w.r.t. 𝐶.

𝑀⃗𝐶 =
⃗ℓ

2 × ⃗𝐹+ −
⃗ℓ

2 × ⃗𝐹− =

= 𝑞
⃗ℓ

2 × [ ⃗𝑒(𝑃+) − ⃗𝑏(𝑃+) × ⃗𝑣+] + 𝑞
⃗ℓ

2 × [ ⃗𝑒(𝑃−) − ⃗𝑏(𝑃−) × ⃗𝑣−] =

= 𝑞
⃗ℓ

2 × [ ⃗𝑒𝐶 +
⃗ℓ

2 ⋅ ∇ ⃗𝑒𝐶 − ( ⃗𝑏𝐶 +
⃗ℓ

2 ⋅ ∇ ⃗𝑏𝐶) × ( ⃗𝑣𝐶 + 𝜔⃗ ×
⃗ℓ

2)] +

+ 𝑞
⃗ℓ

2 × [ ⃗𝑒𝐶 −
⃗ℓ

2 ⋅ ∇ ⃗𝑒𝐶 − ( ⃗𝑏𝐶 −
⃗ℓ

2 ⋅ ∇ ⃗𝑏𝐶) × ( ⃗𝑣𝐶 − 𝜔⃗ ×
⃗ℓ

2)] =

= 𝑞 ⃗ℓ × [ ⃗𝑒𝐶 − ⃗𝑏𝐶 × ⃗𝑣𝐶] + 𝑜(| ⃗ℓ|) .

Power.

𝑃 = 𝑃+ + 𝑃− =
= ⃗𝐹+ ⋅ ⃗𝑣+ + ⃗𝐹− ⋅ ⃗𝑣− =
= 𝑞 [ ⃗𝑒(𝑃+) − ⃗𝑏(𝑃+) × ⃗𝑣+] ⋅ ⃗𝑣+ − 𝑞 [ ⃗𝑒(𝑃−) − ⃗𝑏(𝑃−) × ⃗𝑣−] ⋅ ⃗𝑣− =
= 𝑞 ⃗𝑒(𝑃+) ⋅ ⃗𝑣+ − 𝑞 ⃗𝑒(𝑃−) ⋅ ⃗𝑣− =

= 𝑞 [ ⃗𝑒𝐶 +
⃗ℓ

2 ⋅ ∇ ⃗𝑒𝐶] ⋅ [ ⃗𝑣𝐶 + 𝜔⃗ ×
⃗ℓ

2] − 𝑞 [ ⃗𝑒𝐶 −
⃗ℓ

2 ⋅ ∇ ⃗𝑒𝐶] ⋅ [ ⃗𝑣𝐶 − 𝜔⃗ ×
⃗ℓ

2] =

= ⃗𝑒𝐶 ⋅ (𝜔⃗ × 𝑞 ⃗ℓ) + (𝑞 ⃗ℓ ⋅ ∇ ⃗𝑒𝐶) ⋅ ⃗𝑣𝐶 + 𝑜(| ⃗ℓ|2) .

4.1.3 Force, moment and power on a magnetic dipole

On an elementary magnetic dipole, modeled as a “small” circuit with current 𝑖 enclosing area 𝑆 and center𝐶, with 𝑆 → 0,
𝑖 → +∞ so that 𝑖𝑆𝑛̂ ∶= 𝑚⃗ finite
Force.

…

⃗𝐹 = ∇ ⃗𝑏(𝐶) ⋅ 𝑚⃗
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Moment.

…

𝑀⃗𝐶 = 𝑚⃗ × ⃗𝑏(𝐶)
Power.

𝑃 = ⃗𝑣𝐶 ⋅ ∇𝑏⃗(𝐶) ⋅ 𝑚⃗ + 𝜔⃗ ⋅ 𝑚⃗ × ⃗𝑏(𝐶) .

4.1.4 Energy balance

todo Check and put charges, currents, and dipoles together with the electromagnetic field

Ispirati dalle dimensioni fisiche dei campi elettromagnetici,

[e] = force
charge , [d] = charge

length2

[b] = force ⋅ time
charge ⋅ length , [h] = charge

time ⋅ length

[e ⋅ d] = force
length2 = energy

length3 = [𝑢]

[b ⋅ h] = force
length2 = energy

length3 = [𝑢]

si può costruire la densità di volume di energia (todo trovare motivazioni più convincenti, non basandosi solo sull’analisi
dimensionale ma sul lavoro)

𝑢 = 1
2 (e ⋅ d + b ⋅ h) .

Si può calcolare la derivata parziale nel tempo della densità di energia, 𝑢, e usare le equazioni di Maxwell per ottenere
un’equazione di bilancio dell’energia del campo elettromagnetico. Per un mezzo isotropo lineare, per il quale valgono le
equazioni costitutive d = 𝜀e, b = 𝜇h, la derivata parziale nel tempo dell’energia elettromagnetica può essere riscritta
sfuttando la regola di derivazione del prodotto e le equazioni di Faraday-Lenz-Neumann e Ampére-Maxwell,

𝜕𝑢
𝜕𝑡 = 𝜕

𝜕𝑡 (1
2e ⋅ d + b ⋅ h) = (...)

= e ⋅ 𝜕𝑡d + h ⋅ 𝜕𝑡b =
= e ⋅ (∇ × h − j) − h ⋅ ∇ × e .

L’ultimo termine può essere ulteriormente manipolato, usando l’identità vettoriale

e ⋅ ∇ × h − h ⋅ ∇ × e = 𝑒𝑖𝜀𝑖𝑗𝑘𝜕𝑗ℎ𝑘 − ℎ𝑖𝜀𝑖𝑗𝑘𝜕𝑗𝑒𝑘 = (𝑖 → 𝑘, 𝑘 → 𝑖)
= 𝑒𝑖𝜀𝑖𝑗𝑘𝜕𝑗ℎ𝑘 − ℎ𝑘𝜀𝑘𝑗𝑖𝜕𝑗𝑒𝑖 =
= 𝑒𝑖𝜀𝑖𝑗𝑘𝜕𝑗ℎ𝑘 + ℎ𝑘𝜀𝑖𝑗𝑘𝜕𝑗𝑒𝑖 =
= 𝜕𝑗(𝜀𝑖𝑗𝑘𝑒𝑖ℎ𝑘) =
= 𝜕𝑗(𝜀𝑗𝑘𝑖𝑒𝑖ℎ𝑘) =
= ∇ ⋅ (h × e) = −∇ ⋅ (e × h)

che permette di scrivere l’equazione del bilancio di energia elettromagnetica come,
𝜕𝑢
𝜕𝑡 + ∇ ⋅ s = −e ⋅ j ,
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dove è stato definito il vettore di Poynting, o meglio il campo vettoriale di Poynting,

s(r, 𝑡) ∶= e(r, 𝑡) × h(r, 𝑡) ,

che può essere identificato come un flusso di potenza per unità di superficie, comparendo sotto l’operatore di divergenza
nel bilnacio di energia.
todo. Rimandare a una sezione in cui si mostra questa ultima affermazione passando dal bilancio differenziale al bilancio
integrale e si usa il teorema della divergenza, ∫𝑉 ∇ ⋅ s = ∮𝜕𝑉 s ⋅ n̂.

Bilancio di energia di cariche nel vuoto, o i materiali senza polarizzazione o magnetizzazione

Moto di cariche puntiformi. L’equazione del moto di carica puntiforme 𝑞𝑘 nella posizione r𝑘(𝑡) al tempo 𝑡 è

𝑚𝑘 ̈r𝑘 = f𝑘 + f𝑒𝑚
𝑘 ,

avendo riconosciuto i contributi di forza dovuti al campo elettromagnetico come f𝑒𝑚
𝑘 dagli altri. L’espressione della forza

dovuta al campo elettromagnetico sulla carica 𝑘 è data dalla forza di Lorentz,

f𝑒𝑚
𝑘 (𝑡) = 𝑞𝑘 [e(rk(𝑡), 𝑡) − b(r𝑘(𝑡), 𝑡) × ̇r𝑘(𝑡)]

Continuità della carica elettrica. La densità di carica e di corrente elettrica di un insieme di cariche libere puntiformi
macroscopiche può essere scritta come

𝜌(r, 𝑡) = ∑
𝑘

𝑞𝑘𝛿(r − r𝑘(𝑡))

j(r, 𝑡) = ∑
𝑘

𝑞𝑘 ̇r𝑘(𝑡)𝛿(r − r𝑘(𝑡)) .

L’equazione di continuità della carica, 𝜕𝑡𝜌 + ∇ ⋅ j = 0, risulta quindi soddisfatta,

𝜕𝑡𝜌 = − ∑
𝑘

𝑞𝑘 𝜕𝑖𝛿(r − r𝑘(𝑡)) ̇𝑟𝑘,𝑖

𝜕𝑖𝑗𝑖 = ∑
𝑘

𝑞𝑘 ̇𝑟𝑘,𝑖 𝜕𝑖𝛿(r − r𝑘(𝑡))

Procedimento alternativo (e più generale?)

todo In caso questo procedimento sia più generale, o più corretto, sostituire il procedimento precedente.

La carica elementare in un volumetto Δ𝑉 è data da dal prodotto tra il volume e la densità volumetrica di carica, 𝜌Δ𝑉 ;
la velocità media locale della carica elettrica è v; la forza agente sulla carica elementare immersa in un campo elettro-
magnetico è determinata dalla formula di Lorentz, fΔ𝑉 = Δ𝑉 𝜌 (e − b × v). La potenza di questa forza è il prodotto
scalare con la velocità media delle cariche, Δ𝑉 f ⋅ v
La potenza del campo elettromagnetico sul moto della carica elettrica per unità di volume è quindi

v ⋅ f = 𝜌v ⋅ (e − b × v) = 𝜌v ⋅ e = j ⋅ e .

todo
• discutere questo termine del bilancio di energia cinetica nel moto della carica elettrica
• questo termine compare con segno opposto nel bilancio dell’energia elettromagnetica del sistema
• dove compare la non-conservatività del problema in presenza di materiali dissipativi (come resistenza elettrica con
e = 𝜌𝑅j?
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Il termine e ⋅ j può essere manipolato usando le equazioni di Maxwell, e le relazioni

{d = 𝜀0e + p
h = b

𝜇0
− m

e ⋅ j = e ⋅ (∇ × h − 𝜕𝑡d) =
= −∇ ⋅ (e × h) + h ⋅ ∇ × e − e ⋅ 𝜕𝑡d =
= −∇ ⋅ (e × h) − h ⋅ 𝜕𝑡b − e ⋅ 𝜕𝑡d

Gli ultimi due termini possono essere manipolati in diverse maniere,

e ⋅ 𝜕𝑡d = e ⋅ 𝜕𝑡 (𝜀0e + p) = 𝜕𝑡 (1
2𝜀0e ⋅ e) + e ⋅ 𝜕𝑡p

= 𝜕𝑡 (1
2e ⋅ d) + 1

2 (e ⋅ 𝜕𝑡p − p ⋅ 𝜕𝑡e)

= 𝜕𝑡 ( 1
2𝜀0

d ⋅ d) − p
𝜀0

⋅ 𝜕𝑡d

h ⋅ 𝜕𝑡b = h ⋅ 𝜕𝑡 (𝜇0h + 𝜇0m) = 𝜕𝑡 (1
2𝜇0h ⋅ h) + 𝜇0h ⋅ 𝜕𝑡m

= 𝜕𝑡 (1
2b ⋅ h) + 1

2𝜇0 (h ⋅ 𝜕𝑡m − m ⋅ 𝜕𝑡h)

= 𝜕𝑡 ( 1
2𝜇0

b ⋅ b) − m ⋅ 𝜕𝑡b

Nel vuoto o in mezzi lineari e ⋅ 𝜕𝑡p−p ⋅ 𝜕𝑡e = 0, h ⋅ 𝜕𝑡m−m ⋅ 𝜕𝑡h = 0. Usando le seconde espressioni, si può riscrivere
l’equazione dell’energia del campo elettromagnetico come

𝜕𝑡 (1
2e ⋅ d + 1

2b ⋅ h) + ∇ ⋅ (e × h) = − e ⋅ j +

− 1
2 [e ⋅ 𝜕𝑡p − p ⋅ 𝜕𝑡e + 𝜇0 (h ⋅ 𝜕𝑡m − m ⋅ 𝜕𝑡h)]

o, usando le definizioni di densità di energia elettromagnetica 𝑢 e vettore di Poynting s,

𝜕𝑡𝑢 + ∇ ⋅ s = − e ⋅ j − 1
2 [e ⋅ 𝜕𝑡p − p ⋅ 𝜕𝑡e + 𝜇0 (h ⋅ 𝜕𝑡m − m ⋅ 𝜕𝑡h)]

4.2 Energy and momentum balance in linear, local, isotropic, non-
dispersive media

4.2.1 Energy equation in differential form

In this section balance equations for the energy and the momentum of the system are derived for a linear, local, isotropic,
homogeneous,… systems.
Power per unit volume of the Lorentz’ force per unit volume acting on a charge distribution 𝜌( ⃗𝑟, 𝑡) with electric current
density ⃗𝑗( ⃗𝑟, 𝑡) is

𝑝( ⃗𝑟, 𝑡) = ⃗𝑓( ⃗𝑟, 𝑡) ⋅ ⃗𝑣( ⃗𝑟, 𝑡) =
= [𝜌( ⃗𝑟, 𝑡) ⃗𝑒( ⃗𝑟, 𝑡) − ⃗𝑏( ⃗𝑟, 𝑡) × ⃗𝑣( ⃗𝑟, 𝑡)] ⋅ ⃗𝑣( ⃗𝑟, 𝑡) =
= 𝜌( ⃗𝑟, 𝑡) ⃗𝑒( ⃗𝑟, 𝑡) ⋅ ⃗𝑣( ⃗𝑟, 𝑡) =
= ⃗𝑗( ⃗𝑟, 𝑡) ⋅ ⃗𝑒( ⃗𝑟, 𝑡) .
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Total charge and current. Energy equation for total charge and current

⃗𝑗 ⋅ ⃗𝑒 = (1)

= 1
𝜇0

(∇ × ⃗𝑏 − 𝜀0𝜕𝑡 ⃗𝑒) ⋅ ⃗𝑒 = (2)

= ∇ ⋅ (𝑏⃗ × ⃗𝑒
𝜇0

) + 1
𝜇0

⃗𝑏 ⋅ ∇ × ⃗𝑒 − 𝜀0𝜕𝑡 ⃗𝑒 ⋅ ⃗𝑒 = (3)

= −∇ ⋅ ⃗𝑠 − 1
𝜇0

⃗𝑏 ⋅ 𝜕𝑡 ⃗𝑏 − 𝜀0𝜕𝑡 ⃗𝑒 ⋅ ⃗𝑒 ,

(4.1)

using (1) Ampère-Maxwell’s equation, (2) identity∇× ⃗𝑏 ⋅ ⃗𝑒 = ∇⋅( ⃗𝑏 × ⃗𝑒)+ ⃗𝑏 ⋅∇× ⃗𝑒1, (3) Faraday’s law, and introducing
the definition of the Poynting vector

⃗𝑠 ∶= ⃗𝑒 × ⃗𝑏
𝜇0

. (4.2)

Using the identity, ⃗𝑣 ⋅ 𝜕𝑡 ⃗𝑣 = 𝜕𝑡
| ⃗𝑣|2
2 , energy equation (4.1) becomes

𝜕𝑡𝑢 + ∇ ⋅ ⃗𝑠 = − ⃗𝑗 ⋅ ⃗𝑒 , (4.3)

with the energy volume density,

𝑢 ∶= 1
2 (𝜀0 ⃗𝑒 ⋅ ⃗𝑒 + 1

𝜇0
⃗𝑏 ⋅ ⃗𝑏) . (4.4)

Polarization current.

⃗𝑗𝑃 ⋅ ⃗𝑒 =
= 𝜕𝑡 ⃗𝑝 ⋅ ⃗𝑒

Magnetization current.

⃗𝑗𝑀 ⋅ ⃗𝑒 =
= ∇ × 𝑚⃗ ⋅ ⃗𝑒
= ∇ ⋅ (𝑚⃗ × ⃗𝑒) + 𝑚⃗ ⋅ ∇ × ⃗𝑒
= ∇ ⋅ (𝑚⃗ × ⃗𝑒) − 𝑚⃗ ⋅ 𝜕𝑡 ⃗𝑏

1

∇ × ℎ⃗ ⋅ ⃗𝑒 = 𝑒𝑖𝜀𝑖𝑗𝑘𝜕𝑗ℎ𝑘 =
= 𝜀𝑖𝑗𝑘𝜕𝑗 (𝑒𝑖ℎ𝑘) − ℎ𝑘𝜀𝑖𝑗𝑘𝜕𝑗𝑒𝑖 =
= 𝜕𝑗 (𝜀𝑗𝑘𝑖ℎ𝑘𝑒𝑖) + ℎ𝑘𝜀𝑘𝑗𝑖𝜕𝑗𝑒𝑖 =
= ∇ ⋅ (ℎ⃗ × ⃗𝑒) + ℎ⃗ ⋅ ∇ × ⃗𝑒 .

32 Chapter 4. Force, moments, energy and momentum in electromagnetism



Classical Electromagnetism and Principles of Electrical Engineering

Free current.

⃗𝑗𝑓 ⋅ ⃗𝑒 =
= (∇ × ℎ⃗ − 𝜕𝑡 ⃗𝑑) ⋅ ⃗𝑒
= ∇ ⋅ (ℎ⃗ × ⃗𝑒) + ℎ⃗ ⋅ ∇ × ⃗𝑒 − 𝜕𝑡 ⃗𝑑 ⋅ ⃗𝑒 =
= −∇ ⋅ ⃗𝑆 − ℎ⃗ ⋅ 𝜕𝑡 ⃗𝑏 − 𝜕𝑡 ⃗𝑑 ⋅ ⃗𝑒

(4.5)

4.2.2 Energy equation in integral form - control volumes

Integral form of energy equation for a control volume 𝑉 can be derived integrating the differential balance equation (4.3)
over 𝑉 ,

𝑑
𝑑𝑡 ∫

𝑉
𝑢 + ∫

𝑉
⃗𝑒 ⋅ ⃗𝑗 = − ∮

𝜕𝑉
𝑛̂ ⋅ ⃗𝑠 , (4.6)

having used the divergence theorem to transform volume integral of the divergence of Poynting vector into a flux integral
across the boundary 𝜕𝑉 of the domain, and exploited the indepndence of 𝑉 from time to take the time derivative outside
the integral (see reuls for integration over time-depending domains).
Interpretation. This equation has an immediate interpretation in terms of energy of the system and power (dissipated?
and exchanged with the external environemnt) todo discuss

This equation can be recast in different forms. One of them is particurarly useful later in this material to discuss energy
balance in different regimes of electromagnetic systems and in circuit approximation and discuss the validity of the circuit
approximation itself. Manipulating the surface contribution, the energy equation (4.6) can be recast as

𝑑
𝑑𝑡 ∫

𝑉
𝑢 + ∫

𝑉
⃗𝑒 ⋅ ⃗𝑗 = − ∮

𝜕𝑉
𝜙 ⃗𝑗 ⋅ 𝑛̂ + ∮

𝜕𝑉
𝑛̂ ⋅ [ 1

𝜇0
𝜕𝑡 ⃗𝑎 × ⃗𝑏 + 𝜀0 𝜙 𝜕𝑡 ⃗𝑒] , (4.7)

highlighting two contributions in the surface term:
• the first contribution can be recast as the common power flux at ports of circuits used in circuit approximations,

− ∮
𝜕𝑉

𝜙 ⃗𝑗 ⋅ 𝑛̂ = ∑
𝑘∈wires

𝑣𝑘𝑖𝑘 ,

• the second contribution is often negligible in electromagnetic systems with low characteristic frequencies and
non-large-scale systems, as it will be discussed todo add link

Boundary contribution to electromagnetic energy

∮
𝜕𝑉

𝑛̂ ⋅ ⃗𝑠 = 1
𝜇0

∮
𝜕𝑉

𝑛̂ ⋅ ⃗𝑒 × ⃗𝑏 =

= 1
𝜇0

∮
𝜕𝑉

𝑛̂ ⋅ (−𝜕𝑡 ⃗𝑎 − ∇𝜙) × ⃗𝑏 =

= − 1
𝜇0

∮
𝜕𝑉

𝑛̂ ⋅ (𝜕𝑡 ⃗𝑎 × ⃗𝑏 + ∇ × (𝜙 ⃗𝑏) − 𝜙∇ × ⃗𝑏) =

= − 1
𝜇0

∮
𝜕𝑉

𝑛̂ ⋅ (𝜕𝑡 ⃗𝑎 × ⃗𝑏 − 𝜙 (𝜇0 ⃗𝑗 + 𝜀0𝜇0 𝜕𝑡 ⃗𝑒)) =

= ∮
𝜕𝑉

𝜙 ⃗𝑗 ⋅ 𝑛̂ − ∮
𝜕𝑉

𝑛̂ ⋅ [ 1
𝜇0

𝜕𝑡 ⃗𝑎 × ⃗𝑏 + 𝜀0 𝜙 𝜕𝑡 ⃗𝑒] ,

where the integral of the flux of the curl across a closed surface goes to zero, assuming that curl theorem holds (todo does
it hold?).
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4.2.3 Energy equation in integral form - arbitrary domains

4.2.4 Linear isotropic media

Using constitutive equations of a linear isotropic medium

⃗𝑑 = 𝜀0 ⃗𝑒 + ⃗𝑝 = 𝜀 ⃗𝑒
⃗𝑏 = 𝜇0ℎ⃗ − 𝜇0𝑚⃗ = 𝜇 ℎ⃗ ,

it’s possible to derive dynamical equations for the energy density and momentum due to free current only,

{ 𝜕𝑡𝑈 + ∇ ⋅ ⃗𝑆 = − ⃗𝑒 ⋅ ⃗𝑗𝑓

𝜕𝑡 ⃗𝑆 + 𝑐2∇ ⋅ [ 𝑈𝕀 − ( ⃗𝑑 ⊗ ⃗𝑒 + ℎ⃗ ⊗ ⃗𝑏) ] = −𝑐2 ( ⃗𝑒 𝜌𝑓 − ⃗𝑏 × ⃗𝑗𝑓)

todo use this system to derive the 4-d formulation of special relativity in modern physics

Energy equation

The products in the power equation of free current (4.5) becomes

ℎ⃗ ⋅ 𝜕𝑡 ⃗𝑏 + 𝜕𝑡 ⃗𝑑 ⋅ ⃗𝑒 = 1
𝜇

⃗𝑏 ⋅ 𝜕𝑡 ⃗𝑏 + 𝜀𝜕𝑡 ⃗𝑒 ⋅ ⃗𝑒 =

= 𝜕𝑡 [1
2 ( 1

𝜇
⃗𝑏 ⋅ ⃗𝑏 + 𝜀 ⃗𝑒 ⋅ ⃗𝑒)] =

= 𝜕𝑡 [1
2 (ℎ⃗ ⋅ ⃗𝑏 + ⃗𝑒 ⋅ ⃗𝑑)] = 𝜕𝑡𝑈 .

and ⃗𝑆 = ⃗𝑒 × ℎ⃗ = ⃗𝑒×𝑏⃗
𝜇 . For linear media, the energy of the electromagnetic field per unit volume due to free current only

thus reads

𝜕𝑡𝑈 + ∇ ⋅ ⃗𝑆 = − ⃗𝑒 ⋅ ⃗𝑗𝑓 .

Momentum

Taking the time derivative of the Poynting vector,

𝜕𝑡 ⃗𝑆 = 𝜕𝑡𝑆𝑖 = 𝜕𝑡 (𝜀𝑖𝑗𝑘𝑒𝑗ℎ𝑘) =
= 𝜀𝑖𝑗𝑘 𝜕𝑡𝑒𝑗 ℎ𝑘 + 𝜀𝑖𝑗𝑘 𝑒𝑗 𝜕𝑡ℎ𝑘 ,

and using the product rule to evaluate time derivative
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𝜀𝑖𝑗𝑘 𝜕𝑡𝑒𝑗 ℎ𝑘

𝜀𝑖𝑗𝑘𝜕𝑡𝑒𝑗ℎ𝑘 = 1
𝜀𝜀𝑖𝑗𝑘𝜕𝑡𝑑𝑗ℎ𝑘

= 1
𝜀𝜀𝑖𝑗𝑘 (𝜀𝑗𝑙𝑚𝜕𝑙ℎ𝑚 − 𝑗𝑓

𝑗 ) ℎ𝑘

= −1
𝜀𝜀𝑖𝑗𝑘 𝑗𝑓

𝑗 ℎ𝑘 + 1
𝜀𝜀𝑖𝑗𝑘𝜀𝑗𝑙𝑚ℎ𝑘𝜕𝑙ℎ𝑚

= −1
𝜀𝜀𝑖𝑗𝑘 𝑗𝑓

𝑗 ℎ𝑘 + 1
𝜀 (𝛿𝑖𝑚𝛿𝑘𝑙 − 𝛿𝑖𝑙𝛿𝑘𝑚) ℎ𝑘𝜕𝑙ℎ𝑚 =

= −1
𝜀𝜀𝑖𝑗𝑘 𝑗𝑓

𝑗 ℎ𝑘 + 1
𝜀 (ℎ𝑚𝜕𝑚ℎ𝑖 − ℎ𝑚𝜕𝑖ℎ𝑚) =

= −1
𝜀𝜀𝑖𝑗𝑘 𝑗𝑓

𝑗 ℎ𝑘 + 1
𝜀 [𝜕𝑚(ℎ𝑚ℎ𝑖) − 𝜕𝑚ℎ𝑚 ℎ𝑖 − 𝜕𝑖 (ℎ𝑚ℎ𝑚

2 )] =

= 1
𝜀𝜇𝜀𝑖𝑗𝑘 𝑏𝑗 𝑗𝑓

𝑘 + 1
𝜀𝜇 [𝜕𝑚(𝑏𝑚ℎ𝑖) − 𝜕𝑚𝑏𝑚⏟

=0
ℎ𝑖 − 𝜕𝑖 (ℎ𝑚𝑏𝑚

2 )] =

𝜀𝑖𝑗𝑘 𝑒𝑗 𝜕𝑡ℎ𝑘

𝜀𝑖𝑗𝑘𝑒𝑗𝜕𝑡ℎ𝑘 = 1
𝜇𝜀𝑖𝑗𝑘𝑒𝑗𝜕𝑡𝑏𝑘 =

= − 1
𝜇𝜀𝑖𝑗𝑘𝑒𝑗 (𝜀𝑘𝑙𝑚𝜕𝑙𝑒𝑚) =

= − 1
𝜇 (𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙) 𝑒𝑗𝜕𝑙𝑒𝑚 =

= − 1
𝜇 (𝑒𝑚𝜕𝑖𝑒𝑚 − 𝑒𝑚𝜕𝑚𝑒𝑖) =

= − 1
𝜇 [𝜕𝑖 (𝑒𝑚𝑒𝑚

2 ) − 𝜕𝑚 (𝑒𝑚𝑒𝑖) + 𝜕𝑚𝑒𝑚 𝑒𝑖] =

= − 1
𝜀𝜇 [𝜕𝑖 (𝑑𝑚𝑒𝑚

2 ) − 𝜕𝑚 (𝑑𝑚𝑒𝑖) + 𝜌𝑓 𝑒𝑖] .

the dynamical equation for the Poynting vector ⃗𝑆 reads

𝜕𝑡𝑆𝑖 + 𝑐2𝜕𝑚 [1
2 (𝑑𝑛𝑒𝑛 + ℎ𝑛𝑏𝑛) 𝛿𝑚𝑖 − (ℎ𝑚𝑏𝑖 + 𝑑𝑚𝑒𝑖)] = −𝑐2𝜌𝑓𝑒𝑖 + 𝑐2𝜀𝑖𝑗𝑘𝑏𝑗𝑗𝑓

𝑘

or with vector notation

𝜕𝑡 ⃗𝑆 + 𝑐2∇ ⋅ [ 1
2 ( ⃗𝑑 ⋅ ⃗𝑒 + ℎ⃗ ⋅ ⃗𝑏) 𝕀 − ( ⃗𝑑 ⊗ ⃗𝑒 + ℎ⃗ ⊗ ⃗𝑏) ] = −𝑐2 (𝜌𝑓 ⃗𝑒 − ⃗𝑏 × ⃗𝑗𝑓) .
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CHAPTER

FIVE

REGIMES IN ELECTROMAGNETIC SYSTEMS

Non-dimensional analysis allows to distinguish different regimes of electromagnetic systems.

5.1 Non-dimensional equations of electromagnetism

Continuity equation of electric charge.

𝜕𝑡𝜌 + ∇ ⋅ ⃗𝑗 = 0

Maxwell’s equations.

⎧{{{
⎨{{{⎩

∇ ⋅ ⃗𝑒 = 𝜌
𝜀0

∇ × ⃗𝑒 + 𝜕𝑡 ⃗𝑏 = ⃗0
∇ ⋅ ⃗𝑏 = 0
∇ × ⃗𝑏 − 1

𝑐2
0
𝜕𝑡 ⃗𝑒 = 𝜇0 ⃗𝑗

Potentials.
⃗𝑏 = ∇ × ⃗𝑎
⃗𝑒 = −𝜕𝑡 ⃗𝑎 − ∇𝜙

Gauge. Wave equations.
Assuming characteristic dimensions of the physical quantities involved in the problem exist, and allow to write the gov-
erning equations in non-dimensional form with contributions with (approximately at least) the same order of magnitude,

𝑓𝑅 𝜕𝑡𝜌 + 𝐽
𝐿∇ ⋅ ⃗𝑗 = 0 , 𝜕𝑡𝜌 + 𝐽

𝑓𝐿𝑅 ∇ ⋅ ⃗𝑗 = 0

⎧{{{{
⎨{{{{⎩

𝐸
𝐿 ∇ ⋅ ⃗𝑒 − 𝑅

𝜀0
𝜌 = 0

𝐸
𝐿 ∇ × ⃗𝑒 + 𝐵𝑓 𝜕𝑡 ⃗𝑏 = ⃗0
𝐵
𝐿 ∇ ⋅ ⃗𝑏 = 0
𝐵
𝐿 ∇ × ⃗𝑏 − 𝐸𝑓

𝑐2
0

𝜕𝑡 ⃗𝑒 = 𝜇0𝐽 ⃗𝑗

,

⎧{{{{
⎨{{{{⎩

∇ ⋅ ⃗𝑒 − 𝑅𝐿
𝜀0𝐸 𝜌 = 0

∇ × ⃗𝑒 + 𝐵𝑓𝐿
𝐸 𝜕𝑡 ⃗𝑏 = ⃗0

𝐵
𝐿 ∇ ⋅ ⃗𝑏 = 0

∇ × ⃗𝑏 − 𝐸𝑓𝐿
𝑐2

0𝐵 𝜕𝑡 ⃗𝑒 = 𝜇0𝐽𝐿
𝐵

⃗𝑗

𝐵 ⃗𝑏 = 𝐴
𝐿 ∇ × ⃗𝑎

𝐸 ⃗𝑒 = −𝐴𝑓 𝜕𝑡 ⃗𝑎 − Φ
𝐿 ∇𝜙

,
⃗𝑏 = 𝐴

𝐵𝐿∇ × ⃗𝑎

⃗𝑒 = −𝐴𝑓
𝐸 𝜕𝑡 ⃗𝑎 − Φ

𝐸𝐿∇𝜙
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𝐴
𝐿 ∇ ⋅ ⃗𝑎 + 𝑓Φ

𝑐2
0

𝜕𝑡𝜙 = 0 , ∇ ⋅ ⃗𝑎 + Φ𝑓𝐿
𝑐2

0𝐴 𝜕𝑡𝜙 = 0

All these relations but Ampére-Maxwell’s law and the definition of the electric field in terms of the potentials contains at
most two terms: these relations can be used to immediately find the relation between the scales of the problem (if they’re
not independent), by setting the non-dimensional numbers equal to 1,

𝑅 = 𝜀0𝐸
𝐿 from Gauss' law for ⃗𝑒

𝐸 = 𝐵𝑓𝐿 from Faraday's law
𝐴 = 𝐵𝐿 from the definition ⃗𝑏 = ∇ × ⃗𝑎

𝐴 = Φ𝑓𝐿
𝑐2

0
from Lorentz's gauge

while Ampére-Maxwell’s equation and the definition of the electric field as a function of the electromagnetic potentials
can be used to compare to define different regimes, comparing the non-dimensional numbers appearing in these relations

∇ × ⃗𝑏 = 𝜇0𝐽𝐿
𝐵

⃗𝑗 + 𝐸𝑓𝐿
𝑐2

0𝐵 𝜕𝑡 ⃗𝑒 = (𝐸 = 𝐵𝑓𝐿)

= 𝜇0𝐽𝐿
𝐵

⃗𝑗 + (𝑓𝐿
𝑐0

)
2

𝜕𝑡 ⃗𝑒 =

= 𝜇0𝐽𝐿
𝐵 [ ⃗𝑗 + 𝐵

𝜇0𝐽𝐿 (𝑓𝐿
𝑐0

)
2

𝜕𝑡 ⃗𝑒]

⃗𝑒 = − Φ
𝐸𝐿 [∇𝜙 + 𝐴𝑓𝐿

Φ 𝜕𝑡 ⃗𝑎] = (𝐴 = Φ𝑓𝐿
𝑐2

0
)

= − Φ
𝐸𝐿 [∇𝜙 + (𝑓𝐿

𝑐0
)

2
𝜕𝑡 ⃗𝑎]

5.2 Electrostatics

Elextrostatics studies the electric phenomena in systems with stationary charges. Thus, current is identically zero ⃗𝑗 = ⃗0.
So far, random topics

• governing equations of electrostatics
• zero electric field insiede a conductor

5.2.1 Governing equation of electrostatics

Electrostatics studies systems with no motion of charges, and thus no currents, ⃗𝑗 = ⃗0, and time dependency, 𝜕𝑡 ≡ 0.
Maxwell’s equations.

⎧{{{
⎨{{{⎩

∇ ⋅ ⃗𝑒 = 𝜌
𝜀0

∇ × ⃗𝑒 = ⃗0
∇ ⋅ ⃗𝑏 = 0
∇ × ⃗𝑏 = ⃗0
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Potentials.
⃗𝑏 = ∇ × ⃗𝑎
⃗𝑒 = −∇𝜙

As both the divergence and the curl of the magnetic field are zero, only constant and uniformmagnetic field are allowed. In
absence of magnetic field, the problem is fully determined by the Gauss’ law for the electric field and the steady condition
of the Faraday’s law, implying that the irrotational electric field can be written as the gradient of a scalar potential,

⃗𝑒 = −∇𝜑 .

Introducing this expression into Gauss’ law for the electric field, electrostatics can be formulated as a problem governed
by a Laplace equation for the scalar potential

−Δ𝜑 = 𝜌
𝜀0

,

supplied with the proper boundary conditions. todo discuss boundary conditions…

5.2.2 Zero electric field inside a conductor

Studying the transient of the electric charge distribution inside a conductor,

⃗𝑒 = 𝜌𝑅 ⃗𝑗 ,

whose constitutive equation is

⃗𝑑 = 𝜀 ⃗𝑒 ,

with free electric charge continuity equation

𝜕𝑡𝜌𝑓 + ∇ ⋅ ⃗𝑗𝑓 = 0 ,

and Gauss equation for the displacement field

∇ ⋅ ⃗𝑑 = 𝜌𝑓 .

𝜕𝑡𝜌𝑓 = −∇ ⋅ ⃗𝑗𝑓 =

= −∇ ⋅ ( 1
𝜌𝑅

⃗𝑒) =

= − 1
𝜌𝑅𝜀∇ ⋅ ⃗𝑑 =

= − 1
𝜌𝑅𝜀𝜌𝑓 ,

having assumed uniform properties. The differential equation in the volume of the conductor provides the evolution of
the electric charge in the volume 𝜌(r, 𝑡), given the initial condition 𝜌(r, 0) = 𝜌𝑓,0(r)

𝜕𝑡𝜌𝑓 = − 1
𝜌𝑅𝜀𝜌𝑓

𝜌𝑓(r, 𝑡) = 𝜌𝑓,0(r) exp [− 𝑡
𝜌𝑅𝜀] .

For a conductor:
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Classical Electromagnetism and Principles of Electrical Engineering

• 𝜀 ∼ 𝜀0 = 8.85 ⋅ 10−12Fm−1
• 𝜌𝑅 ∼ 10−7Ωm

so that the time constant (that can be thought as a characteristic time) of the process is

𝜏 = 𝜌𝑅𝜀 ∼ 8.85 ⋅ 10−19 s ,

and thus, after a very short period of time the volume charge density is approximately zero everywhere in the volume: it
accumulates in a very thin surface layer.

Proof

𝜕𝑡 (𝜌𝑓𝑒 𝑡
𝜌𝑅𝜀 ) = 0

𝜌𝑓(r, 𝑡)𝑒 𝑟
𝜌𝑅𝜀 = 𝑎(r)

and appylying initial conditions in all the points of the domain, 𝜌𝑓(r, 0) = 𝜌𝑓,0(r), function 𝑎(r)must be equal to 𝜌𝑓,0(r)
and the solution reads

𝜌𝑓(r, 𝑡) = 𝜌𝑓,0(r) exp [− 𝑡
𝜌𝑅𝜀]

5.3 Steady regime

Steady regime - in a Eulerian description - allows for steady currents, but non-varying fields in an Eulerian description
𝜕𝑡 ≡ 0.
Continuity equation of electric charge.

∇ ⋅ ⃗𝑗 = 0

Maxwell’s equations.

⎧{{{
⎨{{{⎩

∇ ⋅ ⃗𝑒 = 𝜌
𝜀0

∇ × ⃗𝑒 = ⃗0
∇ ⋅ ⃗𝑏 = 0
∇ × ⃗𝑏 = 𝜇0 ⃗𝑗

Potentials.
⃗𝑏 = ∇ × ⃗𝑎
⃗𝑒 = −∇𝜙

5.4 Slow regime

Slow regime leads to circuit approximations of electromagnetic systems with moderate dimensions at low frequency.
For these systems and regimes, the ratio appearing into non-dimensional equations of electromagnetism reads,

𝑓𝐿
𝑐0

≪ 1 .
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Under this assumption, the equations of electromagnetism can be approximated as
Continuity equation of electric charge.

𝜕𝑡𝜌 + ∇ ⋅ ⃗𝑗 = 0

Maxwell’s equations.

⎧{{{
⎨{{{⎩

∇ ⋅ ⃗𝑒 = 𝜌
𝜀0

∇ × ⃗𝑒 + 𝜕𝑡 ⃗𝑏 = ⃗0
∇ ⋅ ⃗𝑏 = 0
∇ × ⃗𝑏 ≃ 𝜇0 ⃗𝑗

Potentials.
⃗𝑏 = ∇ × ⃗𝑎
⃗𝑒 ≃ −∇𝜙
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CHAPTER

SIX

CIRCUIT APPROXIMATION

Circuit approximation of electromagnetic systems is a good approximation of electromagnetic phenomena in slow regime
of systems of moderate dimension, allowing to reduce the complexity of the problem: while the electromagnetism is
a “field” physical phenomenon governed by system of PDEs, circuit approximation allows to build models governed by
ODEs for non-stationary problems, and algebraic equations for stationary problems.
Under the assumptions of circuit approximation, components of the electromagnetic field don’t radiate EM energy through
waves, but involve electromagnetic field confined in space, and interface with other components typically through electric
ports made of conductor wires - or with actions on mechanical elements for electro-mechanical systems.
Energy balance. Under the assumptions of circuit approximation, discussed later, electromagnetic energy balance equa-
tion (4.7) for electomagnetic systems may reduce to

𝑑𝑈
𝑑𝑡 + ∑

𝑘∈Resistors
𝑅𝑘𝑖2

𝑘 = ∑
𝑗∈Wires

𝑣𝑗𝑖𝑗 ,

where resistors produce power dissipation, 𝐷̇ ≥ 0, and the electromagnetic energy 𝑈 is the sum of the contributions
stored in conservative elements like capacitors and inductors,

𝑈 = ∑
𝑖∈Capacitors

1
2𝐶𝑖𝑣2

𝑖 + ∑
𝑗∈Inductors

1
2𝐿𝑗𝑖2

𝑗 ,

or, defining 𝑃 𝑣𝑖,𝑒𝑥𝑡 the power exchanged with the external environment through the ports,

̇𝑈 = 𝑃 𝑣𝑖,𝑒𝑥𝑡 − 𝐷̇ .

Electric circuits. Elementary components of electric circuits are discussed and their constitutive equations relating the
current through the component and the voltage difference at their ports are derived from the equations of electromag-
netism. First, circuits with no unsteady flux of the magnetic field are discussed, along with Kirchhoff’s laws; then time-
varying magnetic flux in a confined regions of the domain and electromagnetic induction in electric circuits is discussed.
Electromagnetic circuits. Circuit approximation of electromagnetic circuit is discussed for systems working in slow
regimes, where the contribution of the displacement current density is negligible, 𝜕𝑡 ⃗𝑑 = 0. Kirchhoff law’s for magnetic
circuits are stated in terms of magnetic flux, magnetomotive force and reluctance, under the (strong? no hysteresis)
assumption of linear and non dispersive constitutive law, ⃗𝑏 = 𝜇ℎ⃗. Electromagnetic models of transformers are discussed.
Electromechanical systems. Electromagnetic and mechanical phenomena interact in electromechanical systems. These
systems usually convert electrical inputsto create mechanical power (e.g. electric motors), or viceversa convert mechanical
power into electromagnetic energy or power (e.g. electric generators).
Network analysis. Classical methods in the analyses are discussed. This section contains exercises with solution taken
from exams at Politecnico di Milano.
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CHAPTER

SEVEN

ENERGY BALANCE IN CIRCUIT APPROXIMATION

Integral balance of electromagnetic energy (4.7) reads

𝑑
𝑑𝑡 ∫

𝑉
𝑢 + ∫

𝑉
⃗𝑒 ⋅ ⃗𝑗 = − ∮

𝜕𝑉
𝜙 ⃗𝑗 ⋅ 𝑛̂ + ∮

𝜕𝑉
𝑛̂ ⋅ [ 1

𝜇0
𝜕𝑡 ⃗𝑎 × ⃗𝑏 + 𝜀0 𝜙 𝜕𝑡 ⃗𝑒] .

Volume terms represent
• time derivative of the electromagnetic energy stored in the system, as an example in capacitors, inductors, air gaps
in magnetic components,

𝑈 = ∑
𝑘∈Capacitors

1
2𝐶𝑘𝑣2

𝑘 + ∑
𝑘∈Inductors

1
2𝐿𝑘𝑖2

𝑘 + ∑
𝑘∈Gaps

1
2𝜃𝑘𝜙2

𝑘 ,

…
• other contributions to electric power, like power dissipated in resistors

∫
𝑉𝑘

⃗𝑒 ⋅ ⃗𝑗 = ∫
𝑉𝑘

𝜌𝑅 | ⃗𝑗|2 = 𝜌𝑅𝑘
𝐴𝑘ℓ𝑘

𝑖2
𝑘

𝐴2
𝑘

=
𝜌𝑅𝑘

ℓ𝑘
𝐴𝑘

𝑖2
𝑘 = 𝑅𝑘𝑖2

𝑘 ,

with the constitutive law of Ohm resistors ⃗𝑒 = 𝜌𝑅 ⃗𝑗, the definition of electric current 𝑖 = ∫𝑆
⃗𝑗 ⋅ 𝑛̂ ∼ 𝑗𝐴 and

resistance 𝑅 = 𝜌𝑅ℓ
𝐴

Boundary terms represent:
• the “VI” contribution, that can be re-written as the product of voltage and current intensity at wires of the electric
ports, the only “active” interface in circuit approximation

∮
𝜕𝑉

𝜙 ⃗𝑗 ⋅ 𝑛̂ = − ∑
𝑘∈wires

𝜙𝑘 ∫
𝑆𝑘

̂𝑗 ⋅ 𝑛̂ = ∑
𝑘∈wires

𝑣𝑘 𝑖𝑘 ,

having defined the current current entering the system through wire 𝑘 (assuming equipotential section of the wire,
constant 𝜙 = 𝑣𝑘 on section 𝑆𝑘 of the 𝑘𝑡ℎ wire),

𝑖𝑘 = − ∫
𝑆𝑘

⃗𝑗 ⋅ 𝑛̂ ,

as the unit vector 𝑛̂ is pointing outwards the boundary of the system.
• a radiation term, due to radiation of electromagnetic energy in free-space through the boundary of the domain;
this contribution is the dominant contribution making antenna wokr, and it’s usually negligible for slow regimes of
systems of moderate dimensions, as discussed below comparing the order of magnitude of these contributions.
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7.1 Boundary terms in circuit approximation

In the limit of slow regime, 𝑓𝐿
𝑐0

≪ 1, the comparison of the characteristic dimensions of the three boundary contributions
gives

− ∮
𝜕𝑉

𝜙 ⃗𝑗 ⋅ 𝑛̂ = ∑
𝑘∈wires

𝑣𝑘𝑖𝑘 = 𝑉 𝐼 ∑
𝑘∈wires

𝑣𝑘𝑖𝑘 (1)

∮
𝜕𝑉

𝑛̂ ⋅ 1
𝜇0

𝜕𝑡 ⃗𝑎 × ⃗𝑏 = 𝑆 𝑓𝐴𝐵
𝜇0

∮
𝜕𝑉

𝑛̂ ⋅ 𝜕𝑡 ⃗𝑎 × ⃗𝑏 = 𝑆 𝐵2𝑓𝐿
𝜇0

∮
𝜕𝑉

𝑛̂ ⋅ 𝜕𝑡 ⃗𝑎 × ⃗𝑏 (2)

∮
𝜕𝑉

𝑛̂ ⋅ 𝜀0 𝜙 𝜕𝑡 ⃗𝑒 = 𝑆 𝜀0𝑓𝐸Φ ∮
𝜕𝑉

𝑛̂ ⋅ 𝜙 𝜕𝑡 ⃗𝑒 = 𝑆 𝐵2𝑓𝐿
𝜇0

(𝑓𝐿
𝑐0

)
2

∮
𝜕𝑉

𝑛̂ ⋅ 𝜙 𝜕𝑡 ⃗𝑒 (3)

being 𝐸 = 𝐵𝑓𝐿, and Φ = 𝐸𝐿 = 𝐵𝑓𝐿2, 𝐸Φ = (𝐵𝑓𝐿)2𝐿, and 𝜀0 = 1
𝜇0𝑐2

0
. If the integrals with non-dimensional

quantities have the same order of magnitude (and this should occur if the non-dimensional equations are build using
reference quantities of the system), the contribution (3) is smaller than the contribution (2) in the slow regime limit, as
its ( 𝑓𝐿

𝑐0
)2 ≪ 1 times the order of magnitude.

Comparing (1) and (2), the second contribution is negligible if

1 ≫
𝑆 𝐵2𝑓𝐿

𝜇0

𝑉 𝐼 = …

todo check this! Is it ok that the frequency disappears? Term (1) is non-zero but (2) is identically zero for steady regime,
𝑓 = 0. And if it’s required to separate steady and unsteady contributions in the discussion of non-dimensional equations

1 ≫
𝑆 𝐵2𝑓𝐿

𝜇0

𝑉 𝐼 = 𝑆 𝐵2𝑓𝐿
𝜇0Φ𝐼 = 𝑆 𝐵2𝑓𝐿

𝜇0𝐵𝑓𝐿2𝐼 = 𝑆 𝐵
𝜇0𝐿𝐼 = 𝑆 𝜇0𝐽𝐿

𝜇0𝐿𝐼 = 𝑆𝐽
𝐼 .

The dimension of the boundary of the domain is proprotional to the square of the linear dimension of the system, 𝑆 ∼ 𝐿2
𝑉 .

This inequality holds if the product of the dimension of the boundary of the domain and the characteristic current density
𝐽 is much smaller than the characteristic current 𝐼 at the boundary.
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CHAPTER

EIGHT

ELECTRIC CIRCUITS

Electrical circuits in irrotational regions. Electric circuits are discussed here first for regions of space with no time-
varying magnetic fields, 𝜕𝑡 ⃗𝑏 = ⃗0. From Faraday’s law, this condition implies ∇ × ⃗𝑒 = ⃗0 and that the electric field
can be expressed as the gradient of the potential 𝜙, interpreted as voltage. Under these assumptions, Kirchhoff laws for
electric circuits, and constitutive equations of elementary components of electric circuits are derived from equations of
electromagnetism.
Elementary circuits.
Electromagnetic induction in electrical circuits. Electromagnetic induction is discussed in electromagnetic systems
modelled with circuit approximation: electromagetic induction in sections of a circuit is governed by Faraday’s law, and
thus produced by time-varying flux of the magnetic field, produced as an example by (a) time-varying magnetic field, (b)
moving sections of the circuit.
Operating regimes. Some characteristic regimes are discussed: steady regime (DC), transient dynamics, periodic regime
(AC).

8.1 Circuit Approximation

Electrical engineering primarily deals with systems involving intense currents but low frequencies. In this operating
regime, the Maxwell equations governing electromagnetic phenomena can be simplified:

1. In regions outside the walls of any capacitors present in the system, the time derivative of the displacement field
flux is negligible.

2. The magnetic field ⃗𝑏 and its time derivative are relevant only in certain regions of space and are thus confined to
components with inductances, such as electric motors.

Outside these regions, the Maxwell equations eq:principles:maxwell reduce to the steady-state equations:

⎧{{
⎨{{⎩

Φ𝜕𝑉 ( ⃗𝑑) = 𝑄𝑓
Γ𝜕𝑆( ⃗𝑒) + Φ̇𝑆( ⃗𝑏) = 0
Φ𝜕𝑉 ( ⃗𝑏) = 0
Γ𝜕𝑆(ℎ⃗) − Φ̇𝑆( ⃗𝑑) = Φ𝑆( ⃗𝑗𝑓)

→

⎧{{
⎨{{⎩

Φ𝜕𝑉 ( ⃗𝑑) = 𝑄𝑓
Γ𝜕𝑆( ⃗𝑒) = 0
Φ𝜕𝑉 ( ⃗𝑏) = 0
Γ𝜕𝑆(ℎ⃗) = Φ𝑆( ⃗𝑗𝑓)

(8.1)

At low frequencies,
• Electric components can be analyzed “for their external effects”: each component has its characteristic behavior
determined by its nature and described by its constitutive equation, but it interfaces with the outside world only
through the electrical port terminals, which in most cases are the electrical wires with which the component can
be connected to other components in a circuit.

• The transmission of the electromagnetic field as electromagnetic waves can be neglected, and the power radiated
through these waves is also negligible. The energy balance of the components of an electrical system can be reduced
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to the power transmitted through the electrical port terminals, which takes the form 𝑃 = ∑𝑘∈Ports 𝑣𝑘𝑖𝑘, as shown
by Energy balance in circuit approximation

𝑑𝐸
𝑑𝑡 = 𝑣𝑖 (8.2)

• Since electromagnetic waves are not transmitted, the low-frequency electromagnetic problem is greatly simplified
compared to the general electromagnetic problem: while the general electromagnetic problem requires solving the
electromagnetic field in all regions of space, the circuit approach allows—when applicable—considering only the
electromagnetic components connected through conductors that replace the system.1

8.1.1 Electrical Wires

Within the circuit approximation, electrical wires with a small cross-section relative to the circuit dimensions can be
treated as 1-dimensional elements, curves with geometric (mean line, cross-section) and physical (resistivity) properties.
The small cross-section allows neglecting the three-dimensional nature of the general problem and assuming that quantities
are uniform across each section—or not very different from their average value: the average drift velocity ⃗𝑣 of the charges
and thus the current density, ⃗𝑗 = 𝜌 ⃗𝑣, has the same direction as the local axis of the conductor.
The current can therefore be expressed as

𝑖 = ⃗𝑗 ⋅ 𝑛̂𝐴 ≃ 𝑗𝐴 , (8.3)

where 𝑛̂ denotes the normal to the cross-section, 𝐴 is the area of the wire’s cross-section, and only the scalar value of the
physical quantities needs to be considered if the cross-section is perpendicular to the wire’s axis.
todo add image

8.1.2 Kirchhoff’s Laws

Kirchhoff’s laws transform the appropriately simplified governing equations of the electromagnetic problem within the
low-frequency regime into the two fundamental laws of circuits.
Node Law. The sum of the currents entering a node in an electrical circuit is zero. This law is a consequence of the
charge balance law eq:principles:charge for a system with zero volume—or a system that cannot accumulate
charge, 𝑄̇𝑉 , such as a wire in an electrical circuit operating at low frequency.

0 = Φ𝜕𝑉 ( ⃗𝑗) = ∑
𝑘

⃗𝑗𝑘 ⋅ 𝑛̂𝑘 𝐴𝑘 = ∑
𝑘

𝑖𝑘 ,

where the sum is performed over all conductors 𝑘 connected to the node under consideration.
Loop Law. The sum of the voltages around a loop in an electrical circuit is zero in regions where the time derivative of
the magnetic field flux is negligible—for example, outside electric motors and transformers. This law is a consequence of
Faraday’s law when the time derivative of the magnetic field flux is zero, allowing the electric field to be written in terms
of the electric potential.

0 = Γ𝜕𝑆( ⃗𝑒) = ∑
𝑘

Δ𝑣𝑘 ,

where the sum is performed over all sides 𝑘 of the circuit loop under consideration.
1 From amathematical point of view, the general electromagnetic problem is governed by partial differential equations (PDEs), which are beyond the

capabilities of a high school student. The circuit approach allows formulating the electromagnetic problem in terms of ordinary differential equations in
the non-steady-state case and algebraic equations in the steady-state (or periodic) case, following appropriate transformations: not the simplest problem
possible, but a problem that high school students can still tackle.
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8.1.3 Components

This section presents the main components that can constitute a circuit. The following section analyzes some possible
connections of these components and some elementary circuits. The components are characterized by their constitutive
law—determined by their nature and internal structure—which completely describes the electrical component “for its
external effects,” i.e., at the terminals of its electrical port, in terms of current 𝑖 and voltage difference across the terminals.
For completeness, and to align with common practice, the two sign conventions for voltage difference and current are
introduced for two classes of components:

• Generators, components that produce electrical power.
• Loads, components that—typically—absorb electrical power.

todo Add images of the two conventions

Electrical Resistance

The constitutive law of linear electrical resistance is determined by Ohm’s law ohm:integral:first:R for linear
resistances:

𝑣 = 𝑅𝑖 ,

using the convention for loads.

Capacitor

The constitutive law of a capacitor is:

𝑖 = 𝐶 𝑑𝑣
𝑑𝑡

Inductor

The constitutive law of an inductor is:

𝑣 = 𝐿𝑑𝑖
𝑑𝑡

Voltage Generator

𝑣 = 𝑒

Current Generator

𝑖 = 𝑎
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Diode

todo

8.2 Elementary circuits

8.2.1 Series and Parallel Connections

Series Connection. A series connection of linear passive components of the same type involves the same current passing
through each component, 𝑖𝑛 = 𝑖, ∀𝑛 = 1 ∶ 𝑁 , and the total voltage difference between the “input terminal” of the
first element and the “output terminal” of the last element being the sum of the voltage differences, 𝑣 = ∑𝑛=1∶𝑁 𝑣𝑛.
Therefore:

• For resistors in series, 𝑅𝑛, the equivalent resistance is equal to the sum of the resistances:

𝑣 = ∑
𝑛

𝑣𝑛 = ∑
𝑛

(𝑅𝑛 𝑖𝑛) = (∑
𝑛

𝑅𝑛) 𝑖 = 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 𝑖 → 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 = ∑
𝑛

𝑅𝑛

• For capacitors in series, 𝐶𝑛, the inverse of the equivalent capacitance is equal to the sum of the inverses of the
capacitances:

𝑑𝑣
𝑑𝑡 = ∑

𝑛

𝑑𝑣𝑛
𝑑𝑡 = ∑

𝑛
( 1

𝐶𝑛
𝑖𝑛) = (∑

𝑛

1
𝐶𝑛

) 𝑖 = 1
𝐶𝑠𝑒𝑟𝑖𝑒𝑠

𝑖 → 1
𝐶𝑠𝑒𝑟𝑖𝑒𝑠

= ∑
𝑛

1
𝐶𝑛

• For inductors in series, 𝐿𝑛, the equivalent inductance is equal to the sum of the inductances:

𝑣 = ∑
𝑛

𝑣𝑛 = ∑
𝑛

(𝐿𝑛
𝑑𝑖𝑛
𝑑𝑡 ) = (∑

𝑛
𝐿𝑛) 𝑑𝑖

𝑑𝑡 = 𝐿𝑠𝑒𝑟𝑖𝑒𝑠
𝑑𝑖
𝑑𝑡 → 𝐿𝑠𝑒𝑟𝑖𝑒𝑠 = ∑

𝑛
𝐿𝑛

Consequently, the resistance and inductance of series-connected resistors and inductors are greater than the maximum
resistance/inductance in the system; the equivalent capacitance of series-connected capacitors is less than the minimum
capacitance of the capacitors in the system.
Parallel Connection. A parallel connection of linear passive components of the same type involves the same voltage
difference across the terminals of each component, 𝑣𝑛 = 𝑖, ∀𝑛 = 1 ∶ 𝑁 , and the current through each component
being generally different, with the sum of the currents equal to the current at the two extreme nodes of the connection,
∑𝑛=1∶𝑁 𝑖𝑛 = 𝑖. Therefore:

• For resistors in parallel, 𝑅𝑛, the inverse of the equivalent resistance is equal to the sum of the inverses of the
resistances:

𝑖 = ∑
𝑛

𝑖𝑛 = ∑
𝑛

( 1
𝑅𝑛

𝑖𝑛) = (∑
𝑛

1
𝑅𝑛

) 𝑖 = 1
𝑅∥

𝑖 → 1
𝑅∥

= ∑
𝑛

1
𝑅𝑛

• For capacitors in parallel, 𝐶𝑛, the equivalent capacitance is equal to the sum of the capacitances:

𝑖 = ∑
𝑛

𝑖𝑛 = ∑
𝑛

(𝐶𝑛
𝑑𝑣𝑛
𝑑𝑡 ) = (∑

𝑛
𝐶𝑛) 𝑑𝑣

𝑑𝑡 = 𝐶∥
𝑑𝑣
𝑑𝑡 → 𝐶∥ = ∑

𝑛
𝐶𝑛
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• For inductors in parallel, 𝐿𝑛, the inverse of the equivalent inductance is equal to the sum of the inverses of the
inductances:

𝑑𝑖
𝑑𝑡 = ∑

𝑛

𝑑𝑖𝑛
𝑑𝑡 = ∑

𝑛
( 1

𝐿𝑛
𝑣𝑛) = (∑

𝑛

1
𝐿𝑛

) 𝑣 = 1
𝐿∥

𝑣 → 1
𝐿∥

= ∑
𝑛

1
𝐿𝑛

Consequently, the resistance and inductance of parallel-connected resistors and inductors are less than the minimum resis-
tance/inductance in the system; the equivalent capacitance of parallel-connected capacitors is greater than the maximum
capacitance of the capacitors in the system.

8.2.2 Special Cases

Open Circuit

A circuit is open in the absence of a physical closure (with a wire) of a loop or behaves as such in the presence of a side
through which the passage of electric current is impeded:

𝑖 = 0 .

Short Circuit

A short circuit occurs through a component with zero voltage drop:

𝑣 = 0 .

If a short circuit occurs in an entire loop, it is traversed by infinite current—in a linear model that does not consider the
limits of validity; in reality, non-linear effects occur much earlier, or sparks, explosions, or other destructive effects—often
characterized by zero resistance. todo check the generality of this condition

8.3 Electromagnetic induction in circuit approximation

E’ possibile applicare l’approssimazione circuitale anche in presenza di regioni in cui non è possibile trascurare il termine
𝜕𝑡b, come ad esempio circuiti elettromagnetici che coinvolgono trasformatori e/o motori o generatori elettrici.
In queste situazioni, se è possibile identificare una regione 𝑉0 dello spazio connessa nella quale il termine 𝜕𝑡b = 0, e
quindi ∇ × e = 0, in 𝑉0 è possibile definire il campo elettrico in termini di un potenziale 𝜑,

e = −∇𝜑 , r ∈ 𝑉0 .

E’ possibile calcolare le differenze di potenziale ai morsetti di un sistema in cui 𝛿𝑡b ≠ 0, racchiuso nel volume 𝑉𝑘, con la
legge di Faraday,

∮
ℓ𝑘

e ⋅ ̂t = − 𝑑
𝑑𝑡 ∫

𝑆𝑘

b ⋅ n̂ ,

dove il percorso chiuso ℓ𝑘 = ℓ𝑐𝑜𝑛𝑑
𝑘 ∪ ℓ𝑚𝑜𝑟𝑠

𝑘 descrive il conduttore in 𝑉𝑘 chiuso dalla linea geometrica tra i morsetti. Se
si può trascurare la resistività del conduttore in 𝑉𝑘, ∫ℓ𝑐𝑜𝑛𝑑

𝑘
e ⋅ ̂t = 0, la differenza di tensione ai morsetti vale

Δ𝑣𝑘 = ∫
ℓ𝑚𝑜𝑟𝑠

𝑘

e ⋅ ̂t = − 𝑑
𝑑𝑡 ∫

𝑆𝑘

b ⋅ n̂
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8.4 Operating Regimes

Steady, DC
Transient dynamics.
Periodic, AC

8.4.1 Steady-State Regime - Direct Current

The operating regime of a circuit in direct current involves the value of the electric current and the system variables being
constant—in real life, “sufficiently constant.”
In this operating regime, capacitors behave like open circuits, since 𝑖 = 𝐶 𝑑𝑣

𝑑𝑡 = 0; inductors behave like short circuits,
𝑣 = 𝐿 𝑑𝑖

𝑑𝑡 = 0.

8.4.2 Transient Regime

Typical transient problems between two steady-state conditions include the dynamics of charging/discharging a capacitor
following the closing/opening of a switch.
RLC Circuit. todo

8.4.3 Periodic Regime - Alternating Current

The harmonic periodic regime is characteristic of the operation of electromagnetic circuits in alternating current, which
is present in many modern electrical networks, from production (through generators) to transformation to high voltage for
efficient long-distance transmission, to transformation to medium and then low voltage for distribution and use.
Using the formalism of phasors to represent harmonic periodic quantities at a constant frequency 𝑓 = Ω

2𝜋 , one can write:

𝑣(𝑡) = 𝑉 𝑒−𝑖Ω𝑡 ,

with 𝑉 ∈ ℂ. todo
Circuit Analysis.
Power Analysis.

8.4.4 AC-DC and DC-AC Conversion

AC → DC, Using Rectifiers

A Graetz bridge with diodes. Oscillations are reduced using capacitors and inductors.
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DC → AC, Using Inverters
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CHAPTER

NINE

CIRCUITI ELETTROMAGNETICI

Sotto opportune ipotesi è possibile usare un modello circuitale anche per sistemi elettromagnetici, come ad esempio i
trasformatori, o i motori elettrici.

• legge di Gauss per il campo magnetico

∇ ⋅ b = 0

• legge di Ampére-Maxwell

∇ × h − 𝜕𝑡d = j

Si aggiungono le seguenti ipotesi:
• materiali lineari non-dissipativi e non-dispersivi b = 𝜇h todo discutere questa ipotesi, insieme a isteresi materiali,
cicli di magnetizzazione,….

• variazioni del campo d nel tempo trascurabili, 𝜕𝑡d = 0.
La legge di Gauss del campo magnetico in forma integrale permette di scrivere la legge ai nodi del flusso del campo
magnetico per i circuiti magnetici,

0 = ∮
𝜕𝑉

b ⋅ n̂ = ∑
𝑘

𝜙𝑘 .

La legge di Ampére-Maxwell in forma integrale considerando:
• un percorso incatenato con il solo induttore

∫
ℓ𝑖𝑛𝑑

h ⋅ ̂t + ∫
ℓ12

h ⋅ ̂t = ∮
ℓ1

h ⋅ ̂t = ∫
𝑆𝑖𝑛𝑑

j ⋅ n̂ = 𝑁𝑖 =∶ 𝑚

• un percorso incatenato con il traferro, aggirando l’induttore

0 = ∫
ℓ𝑡𝑟𝑎𝑓

h ⋅ ̂t + ∫
ℓ21

ℎ̂ ⋅ ̂t = ∑
𝑘

ℎ𝑘ℓ𝑘 + ∫
ℓ21

ℎ̂ ⋅ ̂t

e sommando le due equazioni, riconoscendo che i due integrali di linea sullo stesso percorsoin versi opposti si annullano,
si ottiene la legge alle maglie per i circuiti magnetici

𝑚 = ∫
ℓ𝑖𝑛𝑑

h ⋅ ̂t + ∫
ℓ𝑡𝑟𝑎𝑓

h ⋅ ̂t =

≈ ∑
𝑘∈ℓ

ℎ𝑘 ℓ𝑘 = ∑
𝑘∈ℓ

𝑏𝑘
𝜇𝑘

ℓ𝑘 = ∑
𝑘∈ℓ

ℓ𝑘
𝜇𝑘 𝐴𝑘

𝜙𝑘 .
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Le leggi di Kirchhoff per i circuiti magnetici sono quindi

⎧{
⎨{⎩

∑𝑘∈𝑁𝑗
𝜙𝑘 = 0

𝑚ℓ𝑖
= ∑𝑘∈ℓ𝑖

𝜃𝑘𝜙𝑘 ,

avendo introdotto la riluttanza 𝜃𝑘 = ℓ𝑘
𝜇𝑘 𝐴𝑘

, l’inverso della permeanza Λ𝑘 = 𝜃−1
𝑘 .

9.1 Trasformatore

• flusso del campo magnetico, nell’ipotesi di campo uniforme, o in termini del campo medio

𝜙 = 𝑏 𝐴

• flusso del campo magnetico concatenato a 𝑁 avvolgimenti

𝜓 = 𝑁 𝜙

• relazione tra tensione ai morsetti dell’induttore e flusso concatenato, applicando la legge di Faraday solo in parte
irrotazionali

𝑣 = ̇𝜓

9.1.1 Trasformatore ideale

In assenza di flussi dispersi e riluttanza nel traferro, la legge alle maglie nel traferro implica

0 = 𝑚1 + 𝑚2 = 𝑁1 𝑖1 + 𝑁2 𝑖2

Il flusso del campo magnetico può essere scritto in funzione del flusso concatenato agli avvolgimenti,

𝜙 = 𝜓1
𝑁1

= 𝜓2
𝑁2

La derivata nel tempo di questa relazione, con numero di avvolgimenti costanti nel tempo, implica
𝑣2
𝑁2

= 𝑣1
𝑁1

.

9.1.2 Trasformatore con flussi dispersi

⎧{{{
⎨{{{⎩

𝜙1 − 𝜙1,𝑑 = 𝜙
𝜙2 − 𝜙2,𝑑 = 𝜙
𝑚1 = 𝜃1,𝑑𝜙1,𝑑
𝑚2 = 𝜃2,𝑑𝜙2,𝑑
𝑚1 + 𝑚2 = 0

→ 0 = 𝑚1 + 𝑚2 = 𝑁1 𝑖1 + 𝑁2 𝑖2
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0 = 𝜙2 − 𝜙1 − 𝜙2,𝑑 + 𝜙1,𝑑

= 𝜙2 − 𝜙1 − 𝑚2
𝜃2,𝑑

+ 𝑚1
𝜃1,𝑑

→ 𝜓2
𝑁2

− 𝑚2
𝜃2,𝑑

= 𝜓1
𝑁1

− 𝑚1
𝜃1,𝑑

.

→ 1
𝑁2

(𝑣2 − 𝑁2
2

𝜃2,𝑑

𝑑𝑖2
𝑑𝑡 ) = 1

𝑁1
(𝑣1 − 𝑁2

1
𝜃1,𝑑

𝑑𝑖1
𝑑𝑡 ) .

9.1.3 Trasformatore con flussi dispersi e riluttanza 𝜃𝐹𝑒 nel traferro

⎧{{{
⎨{{{⎩

𝜙1 − 𝜙1,𝑑 = 𝜙
𝜙2 − 𝜙2,𝑑 = 𝜙
𝑚1 = 𝜃1,𝑑𝜙1,𝑑
𝑚2 = 𝜃2,𝑑𝜙2,𝑑
𝑚1 + 𝑚2 = 𝜃𝐹𝑒 𝜙

todo finire e controllare i conti; disegnare circuito equivalente
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CHAPTER

TEN

ELECTROMECHANICAL CIRCUITS

Some systems of interest and widespread use in modern society exploit the interactions between electromagnetic and
mechanical phenomena: a fundamental example is electric machines, some of which can operate both as motors (with
power supplied by the electrical system and converted into mechanical power) and as generators of electrical energy
(converting mechanical power into electrical power).
In a system of inductors with mutual influence, the voltage difference across the “enhanced” inductor 𝑖 is

𝑣𝑖 = ̇𝜓𝑖 = 𝑑
𝑑𝑡 (𝑁𝑖 𝜙𝑖) .

The linked flux depends on the effect of all the inductors in the system (and the magnetic field generated by any causes
external to the system),

𝜙𝑖 = ∑
𝑘

𝜙𝑖𝑘 = ∑
𝑘

1
𝜃𝑖𝑘

𝑚𝑘 ,

where 𝜃𝑖𝑘 is the reluctance of the circuit between the enhancing inductor 𝑘 and the enhanced inductor 𝑖. Using the
expression for the magnetomotive force 𝑚𝑘 = 𝑁𝑘 𝑖𝑘, the voltage difference expression can be rewritten as

𝑣𝑖 = ∑
𝑘

𝑑
𝑑𝑡 (𝑁𝑖 𝑁𝑘

𝜃𝑖𝑘
𝑖𝑘) = ∑

𝑘

𝑑
𝑑𝑡 (𝐿𝑖𝑘 𝑖𝑘) .

In general, in electromechanical circuits, reluctances are not constant parameters of the system but depend on the “me-
chanical” state of the system, described here by the variables x,

𝑣𝑖 = ∑
𝑘

𝑑
𝑑𝑡 (𝑁𝑖 𝑁𝑘

𝜃𝑖𝑘(x) 𝑖𝑘) = ∑
𝑘

𝑑
𝑑𝑡 (𝐿𝑖𝑘(x) 𝑖𝑘) .

v(𝑡) = 𝑑
𝑑𝑡(L(x(𝑡)) i(𝑡)) .

The inductance matrix L is symmetric todo Proof

Example 10.1
Given an constant and uniform magnetic field b(𝑟) = B in a region of space where a simple electric circuit is placed. The
electric circuit consists in a simple circuit with a resistance 𝑅 as a lumped load, and has a rectangular shape. Three sides
are fixed, and the distance between the pair of parallel fixed sides is ℓ; the fourth side can move and its distance between
the parallel fixed side is 𝑥. The unit vector orthogonal to the rectangular surface enclosed in the circuit is n̂.
A mechanical system provides the prescribed motion 𝑥(𝑡) = 𝑥0 + Δ𝑥 sin(Ω𝑡) to the moving side. It’s asked to evaluate
and discuss:

• voltage at the electric port of the load
• energy balance
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Without considering the inductance of the simple circuit. Faraday’s law

Γ𝜕𝑠𝑡
(e) + Φ̇𝑠𝑡

(b) = 0 ,

provides the relation between the time derivative of the magnetic flux though two points of the electric circuit on opposite
sides of the moving side of the circuit, corresponding to the voltage at the electric port of the load

𝑣 = − ∫
ℓ0

e ⋅ ̂𝑡 = −Φ̇𝑠𝑡
(b) = − 𝑑

𝑑𝑡 (𝑁𝐵𝐴) = −𝐵ℓ ̇𝑥 ,

being𝑁 = 1, and𝐵 constant and uniform if self-inductance is not considered. If the inductance of the circuit is neglected,
from the constitutive equation of the resistance, 𝑣 = 𝑅𝑖, and voltage Kirchhoff law, it follows that the current in the simple
circuit is

𝑖 = 𝑣
𝑅 = −Φ̇𝑠𝑡

(b) = −𝐵𝑛 ̇𝐴
𝑅 = −𝐵𝑛 ℓ ̇𝑥

𝑅 = −𝐵𝑛 ℓ Δ𝑥
𝑅 Ω cos(Ω𝑡) .

The force acting on a wire conducting electric current 𝑖 in a uniform magnetic field B is

F = −𝑖B × l .

Calling 𝑦 the “positive” direction of the moving side, and assuming B = 𝐵 ̂z, with ̂z = ̂x × ̂y,

F = 𝑖𝐵ℓ ̂x .

Assuming negligible mass of the moving wire, the second principle of dynamics reduces to force equilibrium, so that the
external force provided to the wire must be opposite to the force acting on the wire due to the EM field

F𝑒 = −F ,

and the external power reads

𝑃 𝑒 = ̇x ⋅ F𝑒 = −𝑖𝐵ℓ ̇𝑥 = 𝐵2ℓ2 ̇𝑥2

𝑅 = 𝐵2ℓ2 (Δ𝑥)2

𝑅 Ω2 cos2(Ω𝑡) .
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Considering the inductance of the circuit and inertia of the wire. Considering the self-induced magnetic flux 𝜙,

𝑣 = − 𝑑
𝑑𝑡 (𝑁 (𝜙 + 𝐵𝐴)) ,

with 𝜙 = 𝑚
𝜃 = 𝑁

𝜃 𝑖. The expression of the voltage a the port of the circuit can be recast as

𝑣 = − 𝑑
𝑑𝑡 (𝑁𝐵𝐴) − 𝑑

𝑑𝑡 (𝑁2

𝜃 𝑖) = − 𝑑
𝑑𝑡 (𝑁𝐵ℓ𝑥) − 𝑑

𝑑𝑡 (𝐿𝑖) .

Now, assuming everything constant except for the 𝑥 and 𝑖, and connecting this circuit to the load with constitutive equation,
𝑣 = 𝑅𝑖, the dynamical equation of the electric circuit becomes

𝐿𝑑𝑖
𝑑𝑡 + 𝑅𝑖 = −𝑁𝐵ℓ𝑑𝑥

𝑑𝑡 .

The dynamical equation of the wire is

𝑚𝑑2𝑥
𝑑𝑡2 = 𝐹 𝑒𝑥𝑡 + 𝐹 𝐸𝑀 =

= 𝐹 𝑒𝑥𝑡 + 𝑖𝐵ℓ .

Energy balance immidiately follows aftermultiplying the circuit equation by 𝑖, the dynamical equation by ̇𝑥 and summing,
𝑑
𝑑𝑡 (1

2𝑚| ̇𝑥|2 + 1
2𝐿𝑖2)⏟⏟⏟⏟⏟⏟⏟⏟⏟

energy: kin.+em.

+ 𝑅𝑖2⏟
dissipation

= 𝐹 𝑒𝑥𝑡 ̇𝑥⏟
ext. power done on the sys

.

10.1 Conservative Electromechanical Systems

The equations governing the electromechanical system, without capacitors, can generally be written as

⎧{
⎨{⎩

M ̈x + D ̇x + Kx = f𝑒𝑥𝑡 + f𝑒𝑚

𝑑
𝑑𝑡 (Li) + Ri = e

In terms of energy,

0 = ̇x𝑇 [M ̈x + D ̇x + Kx − f𝑒𝑥𝑡 − f𝑒𝑚] + i𝑇 [ 𝑑
𝑑𝑡 (Li) + Ri − e]
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In the case of constant mass, damping, and stiffness matrices, and using the product rule to obtain a term of the derivative
of the energy of the inductors exploiting the symmetry of L,

𝑑
𝑑𝑡 [1

2 i
𝑇Li] = i𝑇 𝑑

𝑑𝑡 (L i) + 1
2 i

𝑇 𝑑L
𝑑𝑡 i =

= i𝑇 𝑑
𝑑𝑡 (L i) + ∑

𝑎

1
2 i

𝑇 𝜕L
𝜕𝑥𝑎

i ̇𝑥𝑎 =

= i𝑇 𝑑
𝑑𝑡 (L i) + ∇ (1

2 i
𝑇Li) ̇x .

(10.1)

one can write an equation of macroscopic mechanical energy balance, 𝐸𝑚𝑒𝑐,𝑖𝑛𝑡

0 = 𝑑
𝑑𝑡 [1

2 ̇x𝑇M ̇x + 1
2x

𝑇Kx + 1
2 i

𝑇Li] − ̇x𝑇 (f𝑒𝑚 − ∇𝐸𝑖𝑛𝑑(x, i)) +

− ̇x𝑇 f𝑒𝑥𝑡 − i𝑇 e+
+ ̇x𝑇C ̇x + i𝑇Ri .

Assuming the process is conservative, the form of the forces due to electromagnetic phenomena is derived,

f𝑒𝑚 = ∇x𝐸𝑖𝑛𝑑(x, i) . (10.2)

10.2 Governing Equations

Using the expression (10.2) of the mechanical actions due to electromagnetic effects, the system equations are

{M ̈x + D ̇x + Kx − ∇x𝐸𝑖𝑛𝑑(x, i) = f𝑒𝑥𝑡
𝑑
𝑑𝑡 (L(x)i) + Ri = e

or in the general case

{M ̈x − ∇x𝐸𝑖𝑛𝑑(x, i) = f𝑒𝑥𝑡
𝑑
𝑑𝑡 (L(x)i) + Ri = e

10.3 Energy Balance

10.3.1 Macroscopic Mechanical Energy

Using the expression (10.2) of the mechanical actions due to electromagnetic phenomena, the relation (10.1) can be
rewritten as a macroscopic mechanical energy balance of the system,

𝑑
𝑑𝑡 [1

2 ̇x𝑇M ̇x + 1
2x

𝑇Kx + 1
2 i

𝑇Li] = ̇x𝑇 f𝑒𝑥𝑡 + i𝑇 e − ̇x𝑇D ̇x − i𝑇Ri ,

and therefore

̇𝐸𝑚𝑒𝑐 = 𝑃 𝑒𝑥𝑡 − 𝐷̇ .
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10.3.2 Kinetic Energy

The macroscopic mechanical energy can be written as the sum of the kinetic energy and the internal potential energy
of the system, 𝐸𝑚𝑒𝑐 = 𝐾 + 𝑉 𝑖𝑛𝑡. The time derivative of the potential energy of the internal actions is the opposite
of the power of the conservative internal actions, 𝑃 𝑖𝑛𝑡,𝑐 = − ̇𝑉 𝑖𝑛𝑡; the dissipation is the opposite of the power of the
non-conservative internal actions, 𝑃 𝑖𝑛𝑡,𝑛𝑐 = −𝐷̇. The total power of the internal actions can therefore be written as

𝑃 𝑖𝑛𝑡 = 𝑃 𝑖𝑛𝑡,𝑐 + 𝑃 𝑖𝑛𝑡,𝑛𝑐 = − ̇𝑉 𝑖𝑛𝑡 − 𝐷̇ ,

𝐾̇ = ̇𝐸𝑚𝑒𝑐 − ̇𝑉 𝑖𝑛𝑡 = 𝑃 𝑒𝑥𝑡 − 𝐷̇ − ̇𝑉 𝑖𝑛𝑡⏟⏟⏟⏟⏟
=𝑃 𝑖𝑛𝑡

10.3.3 Total Energy

The first principle of thermodynamics provides the total energy balance equation of a closed system,

̇𝐸𝑡𝑜𝑡 = 𝑃 𝑒𝑥𝑡 + 𝑄̇𝑒𝑥𝑡 .

10.3.4 Internal Energy

The internal energy of a system is defined as the difference between the total energy and the macroscopic kinetic energy,
𝐸 ∶= 𝐸𝑡𝑜𝑡 − 𝐾. The internal energy balance equation of a closed system is

̇𝐸 = 𝑄𝑒𝑥𝑡 − 𝑃 𝑖𝑛𝑡 .

10.3.5 Thermal (Microscopic) Internal Energy

If the thermal internal energy, corresponding to the kinetic energy associated with microscopic dynamics, is defined as the
difference between internal energy and internal potential energy, or the difference between total energy and macroscopic
mechanical energy,

𝐸𝑡ℎ = 𝐸 − 𝑉 𝑖𝑛𝑡 =
= 𝐸𝑡𝑜𝑡 − 𝐸𝑚𝑒𝑐 ,

the thermal internal energy balance equation is

̇𝐸𝑡ℎ = 𝑄̇𝑒𝑥𝑡 + 𝐷̇ .

Proof

̇𝐸𝑡ℎ = ̇𝐸 − 𝑉 𝑖𝑛𝑡 = 𝑄̇𝑒𝑥𝑡 − 𝑃 𝑖𝑛𝑡 − 𝑉 𝑖𝑛𝑡 =
= 𝑄̇𝑒𝑥𝑡 + 𝐷̇ + ̇𝑉 𝑖𝑛𝑡 − ̇𝑉 𝑖𝑛𝑡 =
= 𝑄̇𝑒𝑥𝑡 + 𝐷̇ .

Con condensatori. todo
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Equazioni

• Node laws.

0 = ∑
𝑘∈𝐵𝑗

𝛼𝑗𝑘 𝑖𝑗𝑘

Ai = 0

• Node-branch voltage difference.

A𝑇 v𝑛 = v

• Ground node.

v⟂ = v0 .

• Constitutive equations.

0 = v𝑅 − Ri𝑅 resistances

0 = v𝐿 − 𝑑
𝑑𝑡 (Li𝐿) inductances

0 = 𝑑
𝑑𝑡 (𝐶v𝐶) − i𝐶 capacitors
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CHAPTER

ELEVEN

NETWORK ANALYSIS

Network analysis of linear circuits. Parallel and series connections; equivalent circuits: Thevenin and Norton theo-
rems, Millman’s theorem; state-space representation in physical and transformed domains (typically Laplace for transient
dynamics - e.g. response to change of state of switches -, and Fourier for periodic regimes - e.g. AC)
Harmonic regime. Analysis of networks in AC; state variables, network variables, and power.
Three-phase circuits. Three-phase circuits are introduced, along with some standard configurations (star and trinagles),
and a general approach for the solution.

11.1 Network analysis of linear circuits

Dynamical equations of a linear circuit can be written as a general linear state-space model

{M ̇x = Ax + Bu
y = Cx + Du

The mathematical problem is a system of DAE (dynamical-algebraic equations), as it includes:
• constitutive equations of the linear components
• Kirchhoff laws for current at nodes and voltage in loops

Thus matrixM is likely to be singular, here vector x contains both dynamical (like voltage across a capacitor or current
through an inductor) and algebraic grid variables, current and voltages whose time derivative doesn’t appear explicitly in
the system of DAE.
Different representations. Possible choices of the unknowns:

1. current through any side, voltage at any node
2. loop currents, voltage drops across any side.
3. … any other (linear) combination on the physical quantities
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11.1.1 Thevenin equivalent

One-port. Thevenin’s theorem states that any linear circuit can be reduced to a single voltage source and a single
impedance in series.

One-port circuit

As the goal of Thevenin’s theorem is to find the constitutive equation of the network as 𝑣(𝑖), the network is connected to
an external current generator that prescribes 𝑖 and the voltage 𝑣 at the port is evaluated.
The input of the extended network is

u = (u𝑔𝑒𝑛, 𝑖) ,

while the output is, or at least contains, the voltage 𝑣

y = Cx + Du .

The linear system can be written in Laplace domain as

{𝑠Mx − Mx0 = Ax + Bu
y = Cx + Du

The state and the output are the sum of the free response to non-zero initial conditions and forced response,

{x = (𝑠M − A)−1Mx0 + (𝑠M − A)−1Bu
y = C(𝑠M − A)−1Mx0 + [C(𝑠M − A)−1B + D]u

Forced response can be further manipulated exploiting PSCE, evaluating the effect of one input at a time, setting all the
other inputs equal to zero.

• the effect of setting the input of the external current generator, 𝑖 = 0, is equivalent to evaluate the system with an
open circuit at the port

• the effect of setting equal to zero a tension generator, 𝑒 = 0, is equivalent to a short-circuit on the same side
• the effect of setting equal to zero a current generator, 𝑎 = 0, is equivalent to an open circuit on the same side

If the system is asymptotically stable, the free response is approximately zero when the transient dynamics is over,
and the output equals the forced output. Introducing the transfer function

G(𝑠) = [ G𝑔𝑒𝑛(𝑠) G𝑖(𝑠) ] ,

the input-output relation reads

𝑣 = G(𝑠)u = G𝑔𝑒𝑛(𝑠)u𝑔𝑒𝑛 + 𝐺𝑖(𝑠) 𝑖 =
= 𝑣𝑇 ℎ(𝑠) − 𝑍𝑇 ℎ(𝑠)𝑖(𝑠) ,

having recast it as Thevenin’s theorem defining the voltage 𝑣𝑇 ℎ and the impedance 𝑍𝑇 ℎ of the equivalent circuit,

𝑣𝑇 ℎ ∶= G𝑔𝑒𝑛(𝑠)u𝑔𝑒𝑛(𝑠)
𝑍𝑇 ℎ(𝑠) ∶= −𝐺𝑖(𝑠)
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Many-port circuit

v = G𝑔𝑒𝑛(𝑠)u𝑔𝑒𝑛 + G𝑖(𝑠)i = v𝑇 ℎ − Z𝑇 ℎi .

11.1.2 Norton equivalent

11.2 Network analysis of linear circuits - harmonic regime

The harmonic dynamics of a linear circuit can be evaluated in Fourier domain, or using complex numbers to represent
harmonic functions,

𝑣(𝑡) = 𝑉𝑚𝑎𝑥 cos(Ω𝑡 + 𝜑𝑣) = re{𝑉𝑚𝑎𝑥𝑒𝑖(Ω𝑡+𝜑𝑣)} =
=

√
2𝑉 cos(Ω𝑡 + 𝜑𝑣) =

√
2 re{𝑉 𝑒𝑖(Ω𝑡+𝜑𝑣)} =

√
2 re{𝑣𝑒𝑖Ω𝑡}

𝑖(𝑡) = 𝐼𝑚𝑎𝑥 cos(Ω𝑡 + 𝜑𝑖) = re{𝐼𝑚𝑎𝑥𝑒𝑗(Ω𝑡+𝜑𝑖)} =
=

√
2𝐼 cos(Ω𝑡 + 𝜑𝑖) =

√
2 re{𝐼𝑒𝑗(Ω𝑡+𝜑𝑖)} =

√
2 re{𝑖𝑒𝑗Ω𝑡}

having anticipated the definition Definition 11.2.1 of effective tension 𝑉 and current 𝐼 .

11.2.1 Power

Instantaneous power.

𝑃(𝑡) = 𝑣(𝑡)𝑖(𝑡) =
= 𝑉𝑚𝑎𝑥𝐼𝑚𝑎𝑥 cos(Ω𝑡) cos(Ω𝑡 − 𝜑𝑖) =

= 1
2𝑉𝑚𝑎𝑥𝐼𝑚𝑎𝑥 [cos𝜑𝑖 + cos(2Ω𝑡)]

(11.1)

having used Werner’s formula,

cos𝑥 cos 𝑦 = 1
2 [cos(𝑥 − 𝑦) + cos(𝑥 + 𝑦)] .

and the property cos(−𝑥) = cos𝑥.
Average power on a period. Over a period 𝑇 = 1

𝑓 = 2𝜋
Ω

𝑃 = 1
𝑇 ∫

𝑡0+𝑇

𝑡=𝑡0

𝑃(𝑡) 𝑑𝑡 = 𝑉𝑚𝑎𝑥𝐼𝑚𝑎𝑥
2 = 𝑉 𝐼 ,

as the integral of the harmonic term with period 𝑇
2 of the instantaneous power (11.1) is identically zero, and with the

definition of the effective voltage and current

Definition 11.2.1 (Effective voltage and current in AC)
Effective voltage and currents

𝑉 ∶= 𝑉𝑚𝑎𝑥√
2

, 𝐼 ∶= 𝐼𝑚𝑎𝑥√
2

,

are defined as those voltage and current in DC providing the same value of average power.
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Complex power. Complex power of a dipole with impedence 𝑍, 𝑣 = 𝑍𝑖

𝑆 ∶= 𝑣𝑖∗ = |𝑣|𝑒𝑗𝜑𝑣 |𝑖|𝑒−𝑗𝜑𝑖 = |𝑣||𝑖|𝑒𝑗(𝜑𝑣−𝜑𝑖) =
= 𝑍𝑖𝑖∗ = 𝑍|𝑖|2 = (𝑅 + 𝑗𝑋)|𝑖|2 = |𝑍||𝑖|2𝑒𝑗𝜑𝑍 = 𝑃 + 𝑗𝑄 ,

with the active power 𝑃 and the reactive power 𝑄

𝑃 = re{𝑆} = |𝑆| cos𝜑𝑍 = …
𝑄 = im{𝑆} = |𝑆| sin𝜑𝑍 = …

11.3 Three-phase circuits

11.3.1 Star-star network

General solution

Tension 𝑣𝐴𝐵 between the centers of the stars 𝐴, 𝐵

𝑣𝐴𝐵 =
∑3

𝑔=1 𝑌𝑔𝑒𝑔

∑4
𝑖=1 𝑌𝑖

.
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Proof.

PSCE is used on the linear network, leaving only one tension generator on at a time, and then combining the results.
Tension generator 𝑒1 on, 𝑒2 = 𝑒3 = 0 off. Leaving 𝑒1 on, and switching off 𝑒2 = 𝑒3 = 0, tension generator sees an
equivalent impedance

𝑍𝑒𝑞,1 = 𝑍1 + (𝑍2 ∥ 𝑍3 ∥ 𝑍4)

= 1
𝑌1

+ 1
𝑌2 + 𝑌3 + 𝑌4

= 𝑌1234
𝑌1𝑌234

,

so that:
• the current through the generator reads

𝑖1,1 = 𝑒1
𝑍𝑒𝑞,1

= 𝑌1𝑌234
𝑌1234

𝑒1

• the currents through the other sides (acting as current dividers are):

𝑖2,1 = − 𝑌2
𝑌234

𝑖1,1 = − 𝑌1𝑌2
𝑌1234

𝑒1

𝑖3,1 = − 𝑌3
𝑌234

𝑖1,1 = − 𝑌1𝑌3
𝑌1234

𝑒1

𝑖4,1 = 𝑌4
𝑌234

𝑖1,1 = 𝑌1𝑌4
𝑌1234

𝑒1

• tension 𝑣𝐴𝐵

𝑣𝐴𝐵,1 = 𝑒1 − 𝑍1𝑖1,1 = (1 − 𝑌234
𝑌1234

) 𝑒1 = 𝑌1𝑒1
∑4

𝑘=1 𝑌𝑘
.

PSCE. Exploiting the PSCE and the symmetry of the system, the expressions of currents in the phases, in the neutral and
the center-center voltage seamlessly follow

𝑖1 = 𝑌1𝑌234
𝑌1234

𝑒1 − 𝑌1𝑌2
𝑌1234

𝑒2 − 𝑌1𝑌3
𝑌1234

𝑒3 =

= 𝑌1𝑒1 − 𝑌1
𝑌1234

3
∑
𝑔=1

𝑌𝑔 𝑒𝑔

𝑖2 = 𝑌2𝑒2 − 𝑌2
𝑌1234

3
∑
𝑔=1

𝑌𝑔 𝑒𝑔

𝑖3 = 𝑌3𝑒3 − 𝑌3
𝑌1234

3
∑
𝑔=1

𝑌𝑔 𝑒𝑔

𝑖4 = 𝑌4
𝑌1234

3
∑
𝑔=1

𝑌𝑔 𝑒𝑔

𝑣𝐴𝐵 =
∑3

𝑔=1 𝑌𝑔 𝑒𝑔

∑4
𝑘=1 𝑌𝑘
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Equilibrated generation and loads

Extra connections

Phase-neutral connections

Connections of a phase with the neutral result in parallel impedence with the generators and/or the loads

Phase-phase connections

Phase-phase connections don’t influence the voltage 𝑣𝐴𝐵 between the centers 𝐴, 𝐵.
todo Write the proof.

11.4 Exercises

Topics: Thevenin and Norton equivalent;…
Electric circuits:

• Type a: transient dynamics of systems with 1 dynamic component (either capacitor or inductor);
• Type b: harmonic dynamics of linear systems: phasor algebra, complex power,…
• Type c: three-phase circuits, triangles and stars,…

Electromagnetic circuits:
• Type d: circuit approximation of magnetic circuit,…
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Exams.

2025-02-11

1. Type a. Exercise ??
2. Type b. Exercise ??
3. Type b. Exercise ??
4. Theory: electrical line. Electro-thermal model of the cable,…

2025-01-22

1. Type a. Exercise ??
2. Type b. Exercise ??
3. Type d. Exercise ??
4. Theory: transformer
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2024-09-06

1. Type a. Exercise ??
2. Type b. Exercise ??
3. Type c. Exercise ??
4. Theory: overload in cables

2024-07-22

1. Type a. Exercise ??
2. Type b. Exercise ??
3. Type c. Exercise ??

2024-06-19

1. Type c. Exercise ??
2. Type d. Exercise ??

2024-02-13

1. Type d.+a. Exercise ??
2. Type a. Exercise ??
3. Type c. Exercise ??

11.4.1 Transient dynamics of linear electrical grids with one dynamic component

Guidelines for solution
Breaking down the solution:

1. Find themany-port equivalent of the linear algebraic part of the network (resistor, and prescribed generators),
using PSCE. Find the relation between port voltage and currents and all the required variables of the network,

v𝑝𝑜𝑟𝑡 = v0(e, a) + Ri𝑝𝑜𝑟𝑡
z = z0(e, a) + z/𝑖𝑝𝑜𝑟𝑡

i𝑝𝑜𝑟𝑡

If 2 ports exist and port𝐴 is connected to a dynamical linear component and port𝐵 is connected to an ideal switch,
the equations become to

𝑣𝐴 = 𝑣0,𝐴(e, a) + 𝑅𝐴𝐴𝑖𝐴 + 𝑅𝐴𝐵𝑖𝐵
𝑣𝐵 = 𝑣0,𝐵(e, a) + 𝑅𝐵𝐴𝑖𝐴 + 𝑅𝐵𝐵𝑖𝐵
z = z0(e, a) + z/𝑖𝑝𝑜𝑟𝑡

i𝑝𝑜𝑟𝑡
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2. Evaluate the steady conditions for 𝑡 ≤ 0−, with the given state of the switch (𝑖𝐵 = 0 if it’s open, 𝑣𝐵 = 0 if it’s
closed), and using the constitutive equation of the dynamical element (a capacitor acts as an open circuit in steady
conditions, 𝑖𝐴 = 0 as 𝑖𝐴 = 𝐶 𝑑𝑣𝐴

𝑑𝑡 ; an inductor acts as a short-circuit in steady conditions, 𝑣𝐴 = 0, as 𝑣𝐴 = 𝐿 𝑑𝑖𝐴
𝑑𝑡 ).

In the first two equations of the system, two of the four varaibles 𝑖𝐴,𝐵, 𝑣𝐴,𝐵 are thus known, and this system can
be solved to find the other two quantities. Once i𝑝𝑜𝑟𝑡 is known, grid variables z can be evaluated.

3. Transient dynamics is then evaluated using the change of state in the switch

open to close: {𝑣𝐴(𝑡) = (1 − ℎ(𝑡)) 𝑣𝐴,0−

𝑖𝐴(𝑡) = ℎ(𝑡) 𝑖𝐴,𝑡≥0(𝑡)

close to open: {𝑣𝐴(𝑡) = ℎ(𝑡) 𝑣𝐴,𝑡≥0(𝑡)
𝑖𝐴(𝑡) = (1 − ℎ(𝑡)) 𝑖𝐴,0−

and using the conditions for 𝑡 ≥ 0 in the equations of the equivalent network to find the equivalent resistance 𝑅𝑒𝑞
of the algebraic part of the network to be used in the constitutive equations of the dynamical component,

capacitor ∶ 0 = 𝑖𝐴 + 𝐶 𝑑𝑣𝐴
𝑑𝑡 → 𝑓(x𝐵) = 𝑣𝐴 + 𝑅𝑒𝑞𝐶 𝑑𝑣𝐴

𝑑𝑡
inductor ∶ 0 = 𝑣𝐴 + 𝐿𝑑𝑖𝐴

𝑑𝑡 → 𝑓(x𝐵) = 𝑖𝐴 + 𝑅𝑒𝑞𝐿𝑑𝑖𝐴
𝑑𝑡

with 𝑓(x𝐵) a forcing term depending on the state of the switch, and the initial conditions for the state variable of
the dynamical components equal to the steady conditions, as there’s no jump in state variables without impulsive
forces.

4. Once the state variables of the dynamical equations are known. it’s possible to evaluate all the other required
variables.

Exercise 11.4.1 (Exam 2025-02-11, Exercise 1.)
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Solution

Following the guidelines for the solution, a many-port Thevenin equivalent circuit of the resistive part of the circuit is
found, with two ports for interfacing with the capacitor (A) and with the switch. The dynamical equation of the system
is written in state-space representation, writing the voltage at the ports and the unknown variable 𝑖(𝑡) as outputs; the
capacitor contitutive equation is used to find the time evolution of the system once the switch is closed

Internal generators on, open circuit

Solution using two loop currents, 𝑖1 in the upper part of the circuit and 𝑖2 in the lower triangle. Using KVL

0 = 𝑒1 − 𝑅2𝑖1,0 − 𝑅1(𝑎 + 𝑖1,0)

→ 𝑖1,0 = 1
𝑅1 + 𝑅2

𝑒1 − 𝑅1
𝑅1 + 𝑅2

𝑎

so that the desired variables read

⎧{{
⎨{{⎩

𝑣𝐴,0 = 𝑅3𝑎 − 𝑅2𝑖1,0 = [𝑅3 + 𝑅1𝑅2
𝑅1 + 𝑅2

] 𝑎 − 𝑅2
𝑅1 + 𝑅2

𝑒1

𝑣𝐵,0 = 𝑒2 − (𝑅3 + 𝑅4)𝑎
𝑖0 = 𝑎

⎧{
⎨{⎩

𝑣𝐴,0 = 7.67 𝑉
𝑣𝐵,0 = −13.00 𝑉
𝑖0 = 3.00 𝐴
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Internal generators off, current generators at the ports

Callling 𝑖𝐴 and 𝑖𝐵 the current passing through the current generators connected at the ports. The solution is found
powering one generation at a time and then exploiting PSCE
Powering A…
Powering B.…
Currents in the two parallel branches in the upper part of the circuit (current dividers) read

⎧{{
⎨{{⎩

𝑖 = 𝑖𝐴

𝑣𝐴 = [𝑅3 + 𝑅1𝑅2
𝑅1 + 𝑅2

] 𝑖𝐴 − 𝑅3 𝑖𝐵

𝑣𝐵 = −𝑅3 𝑖𝐴 + (𝑅3 + 𝑅4) 𝑖𝐵

The equations of the equivalent algebraic system are

⎧{
⎨{⎩

𝑣𝐴 = 𝑣𝐴,0 + 𝑅𝐴𝐴 𝑖𝐴 + 𝑅𝐴𝐵 𝑖𝐵
𝑣𝐵 = 𝑣𝐵,0 + 𝑅𝐵𝐴 𝑖𝐴 + 𝑅𝐵𝐵 𝑖𝐵
𝑖 = 𝑖,0 + 𝑖/𝑖𝐴

𝑖𝐴 + 𝑖/𝑖𝐵
𝑖𝐵

[𝑣𝐴(𝑡)
𝑣𝐵(𝑡)] = [𝑣𝐴0

𝑣𝐵0
] + [𝑅3 + 𝑅1𝑅2

𝑅1+𝑅2
−𝑅3

−𝑅3 𝑅3 + 𝑅4
] [𝑖𝐴(𝑡)

𝑖𝐵(𝑡)]

𝑖(𝑡) = 𝑖0 + 𝑖𝐴(𝑡)
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detR = (𝑅3 + 𝑅1𝑅2
𝑅1 + 𝑅2

) (𝑅3 + 𝑅4) − 𝑅2
3 =

= (𝑅3 + 𝑅4) (𝑅3 + 𝑅1𝑅2
𝑅1 + 𝑅2

− 𝑅2
3

𝑅3 + 𝑅4
) =

= (𝑅3 + 𝑅4) ( 𝑅1𝑅2
𝑅1 + 𝑅2

+ 𝑅3𝑅4
𝑅3 + 𝑅4

) .

Steady solution for 𝑡 ≤ 0−. With switch open 𝑖𝐵 = 0 and steady conditions 𝑖𝐴 = 𝐶 ̇𝑣𝐴 = 0,

⎧{
⎨{⎩

𝑣𝐴(0−) = 𝑣𝐴,0 = 7.67 𝑉
𝑣𝐵(0−) = 𝑣𝐵,0 = −13.00 𝑉
𝑖(0−) = 𝑖,0 = 3.00 𝐴

Transient dynamics, when the switch closes 𝑣𝐵(𝑡 ≥ 0+) = 0,

𝑖𝐴(𝑡) = 𝑅3 + 𝑅4
detR Δ𝑣𝐴(𝑡) + 𝑅3

detRΔ𝑣𝐵(𝑡)

• Tension across the switch

𝑣𝐵(𝑡) = 𝑣𝐵,0 ℎ(−𝑡)
Δ𝑣𝐵(𝑡) = 𝑣𝐵(𝑡) − 𝑣𝐵,0 = −𝑣𝐵,0 ℎ(𝑡) .

• Tension across the capacitor. The dynamical equation for the difference of the state variable reads

0 = 𝑖𝐴 + 𝐶 ̇𝑣𝐴 =

= 𝑅3 + 𝑅4
detR Δ𝑣𝐴(𝑡) + 𝑅3

detRΔ𝑣𝐵(𝑡) + 𝐶 ̇𝑣𝐴 .
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As 𝑣𝐴(𝑡 = 0) = 𝑣𝐴,0 (no jump in state variables without impulsive forcing), Δ𝑣𝐴 = 𝑣𝐴 − 𝑣𝐴,0, and 𝑑
𝑑𝑡 Δ𝑣𝐴 =

𝑑
𝑑𝑡 𝑣𝐴, the dynamical equation reads

⎧{{
⎨{{⎩

detR
𝑅3 + 𝑅4

𝐶 𝑑
𝑑𝑡Δ𝑣𝐴 + Δ𝑣𝐴 = − 𝑅3

𝑅3 + 𝑅4
Δ𝑣𝐵(𝑡) = 𝑅3

𝑅3 + 𝑅4
𝑣𝐵,0 ℎ(𝑡)

Δ𝑣𝐴(0−) = 0 .

Δ𝑣𝐴(𝑡) = 𝑅3
𝑅3 + 𝑅4

𝑣𝐵,0 [1 − exp(− 𝑡
𝜏 )] ℎ(𝑡) ,

having defined the time constant and the equivalent reistence seen by the capacitor

𝑅𝑒𝑞 ∶= detR
𝑅3 + 𝑅4

= 𝑅1𝑅2
𝑅1 + 𝑅2

+ 𝑅3𝑅4
𝑅3 + 𝑅4

= 50
21 𝑉 = 2.381 𝑉

𝜏 ∶= 𝑅𝑒𝑞𝐶 = 1.1905 𝑠

Tension through the capacitor reads

𝑣𝐴(𝑡) = 𝑣𝐴,0 + 𝛿𝑣𝐴(𝑡) =

= 𝑣𝐴,0 + Δ𝑣𝐴,+∞ [1 − exp(− 𝑡
𝜏 )] ℎ(𝑡) ,

so that the values
𝑣𝐴(0+) = 𝑣𝐴,0 = 7.67 𝑉

𝑣𝐴(+∞) = 𝑣𝐴,0 + Δ𝑣𝐴,+∞ = (7.667 − 5.571) 𝑉 = 2.095 𝑉 .

• Current through the capacitor.

𝑖𝐴(𝑡) = 𝑅3 + 𝑅4
detR Δ𝑣𝐴(𝑡) + 𝑅3

detRΔ𝑣𝐵(𝑡) =

= 𝑅3 + 𝑅4
detR

𝑅3
𝑅3 + 𝑅4

𝑣𝐵,0 [1 − exp(− 𝑡
𝜏 )] ℎ(𝑡) − 𝑅3

detR𝑣𝐵,0 ℎ(𝑡) =

= − 𝑅3
detR𝑣𝐵,0 exp(− 𝑡

𝜏 ) ℎ(𝑡)

= 2.34 𝐴 exp(− 𝑡
𝜏 ) ℎ(𝑡) .

so that the values
𝑖𝐴(0+) = 2.34 𝐴

𝑖𝐴(+∞) = 0.00 𝐴

• Current 𝑖(𝑡)

𝑖(𝑡) = 𝑖,0 + 𝑖𝐴(𝑡) =

= 𝑎 − 𝑅3
detR𝑣𝐵,0 exp(− 𝑡

𝜏 ) ℎ(𝑡)

= 3.00 𝐴 + 2.34 𝐴 𝑒− 𝑡
𝜏 ℎ(𝑡) ,

so that the values
𝑖(0+) = 5.35 𝐴

𝑖(+∞) = 3.00 𝐴
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Energy stored in the capacitor at 𝑡 = 0. Energy in the capacitor reads

𝐸𝐶(𝑡) = 1
2𝐶𝑣2

𝐴(𝑡) .

At 𝑡 = 0, 𝑣𝐴(0) = 7.667 𝑉 and 𝐸𝐶(0) = 14.694 𝐽 .

Exercise 11.4.2 (Exam 2025-01-22, Exercise 1.)

Solution

Following the guidelines for the solution, a many-port Thevenin equivalent circuit of the resistive part of the circuit is
found, with two ports for interfacing with the capacitor (A) and with the switch. The dynamical equation of the system
is written in state-space representation, writing the voltage at the ports and the unknown variable 𝑖(𝑡) as outputs; the
capacitor contitutive equation is used to find the time evolution of the system once the switch is closed

Internal generators on, open circuit

Solution using two loop currents, 𝑖1 in the upper part of the circuit and 𝑖2 in the lower triangle. Using KVL

0 = 𝑒2 − (𝑅7 + 𝑅8 + 𝑅1 + 𝑅4 + 𝑅6)𝑖2,0
0 = 𝑒1 − (𝑅2 + 𝑅3)𝑖1,0

𝑖2,0 = 1
𝑅14678

𝑒2

𝑖1,0 = 1
𝑅23

𝑒1

with 𝑅14678 = 𝑅1 + 𝑅4 + 𝑅6 + 𝑅7 + 𝑅8, and 𝑅23 = 𝑅2 + 𝑅3. The desired physical quantities are

⎧{{{
⎨{{{⎩

𝑣𝐴,0 = −𝑅8𝑖2,0 = − 𝑅8
𝑅14678

𝑒2

𝑣𝐵,0 = −𝑅4𝑖2,0 + 𝑅3𝑖1,0 = − 𝑅4
𝑅14678

𝑒2 + 𝑅3
𝑅23

𝑒1

𝑖0 = −𝑖2,0 = − 1
𝑅14678

𝑒2
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and their values

⎧{
⎨{⎩

𝑣𝐴,0 = −20.6900 𝑉
𝑣𝐵,0 = 12.4750 𝑉
𝑖0 = −1.7241 𝐴

Internal generators off, current generators at the ports

Callling 𝑖𝐴 and 𝑖𝐵 the current passing through the current generators connected at the ports. The solution is found
powering one generation at a time and then exploiting PSCE
Powering A

0 = (𝑖2 − 𝑖𝐴)𝑅8 + 𝑖2(𝑅14678)

→ 𝑖2 = 𝑅8
𝑅14678

𝑖𝐴

𝑣𝐴,𝐴 = −𝑅8(𝑖2 − 𝑖𝐴) = 𝑅8𝑅1467
𝑅14678

𝑖𝐴

𝑣𝐵,𝐴 = −𝑅4𝑖2 = − 𝑅4𝑅8
𝑅14678

𝑖𝐴

𝑖,𝐴 = −𝑖2 = − 𝑅8
𝑅14678

𝑖𝐴

𝑣𝐴,𝐴 = 𝑅𝐴𝐴 𝑖𝐴 = 7.0345 Ω 𝑖𝐴
𝑣𝐵,𝐴 = 𝑅𝐵𝐴 𝑖𝐴 = −1.2414 Ω 𝑖𝐴

𝑖,𝐴 = 𝑖/𝑖𝐴
𝑖𝐴 = −0.4138 𝑖𝐴
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Powering B.

Currents in the two parallel branches in the upper part of the circuit (current dividers) read

𝑖2,𝐵 = 𝑅4
𝑅14678

𝑖𝐵

𝑖3,𝐵 = 𝑅2
𝑅23

𝑖𝐵

and the desired variables

𝑖,𝐵 = 𝑖4,𝐵 = 𝑅1678
𝑅14678

𝑖𝐵

𝑣𝐴,𝐵 = −𝑅8𝑖2,𝐵 = − 𝑅4𝑅8
𝑅14678

𝑖𝐵

𝑣𝐵,𝐵 = 𝑅4𝑖4,𝐵 + 𝑅3𝑖3,𝐵 = [𝑅4(𝑅1678)
𝑅14678

+ 𝑅2𝑅3
𝑅23

] 𝑖𝐵

𝑣𝐴,𝐵 = 𝑅𝐴𝐵 𝑖𝐵 = −1.2414 Ω 𝑖𝐵
𝑣𝐵,𝐵 = 𝑅𝐵𝐵 𝑖𝐵 = 6.8073 Ω 𝑖𝐵

𝑖,𝐵 = 𝑖/𝑖𝐵
𝑖𝐵 = 0.8966 𝑖𝐵

The equations of the equivalent algebraic system are

⎧{
⎨{⎩

𝑣𝐴 = 𝑣𝐴,0 + 𝑅𝐴𝐴 𝑖𝐴 + 𝑅𝐴𝐵 𝑖𝐵
𝑣𝐵 = 𝑣𝐵,0 + 𝑅𝐵𝐴 𝑖𝐴 + 𝑅𝐵𝐵 𝑖𝐵
𝑖 = 𝑖,0 + 𝑖/𝑖𝐴

𝑖𝐴 + 𝑖/𝑖𝐵
𝑖𝐵
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and they can be used to write the currents as a function of the tensions

𝑖𝐴 = 1
detR (𝑅𝐵𝐵 Δ𝑣𝐴(𝑡) − 𝑅𝐴𝐵 Δ𝑣𝐵(𝑡))

𝑖𝐵 = 1
detR (−𝑅𝐵𝐴 Δ𝑣𝐴(𝑡) + 𝑅𝐴𝐴 Δ𝑣𝐵(𝑡))

The switch command is off for 𝑡 ≤ 0−, on for 𝑡 > 0,
𝑖𝐵(𝑡 ≤ 0−) = 0 , 𝑣𝐵(𝑡 ≥ 0+) = 0 .

Steady solution for 𝑡 ≤ 0−. With switch open 𝑖𝐵 = 0 and steady conditions 𝑖𝐴 = 𝐶 ̇𝑣𝐴 = 0,
⎧{
⎨{⎩

𝑣𝐴(0−) = 𝑣𝐴,0 = −20.6900 𝑉
𝑣𝐵(0−) = 𝑣𝐵,0 = 12.4750 𝑉
𝑖(0−) = 𝑖,0 = −1.7241 𝐴

Transient dynamics. For 𝑡 ≥ 0, the switch is closed and thus 𝑣𝐵(𝑡 ≥ 0+) = 0.
• Tension across the switch as a function of time

𝑣𝐵(𝑡) = 𝑣𝐵,0 ℎ(−𝑡) = 𝑣𝐵,0(1 − ℎ(𝑡))
Δ𝑣𝐵(𝑡) = 𝑣𝐵(𝑡) − 𝑣𝐵,0 = −𝑣𝐵,0 ℎ(𝑡) .

• Tension across the capacitor. Writing 𝑖𝐴 across the capacitor as a function of the tensions, the constitutive
equation of the capacitor becomes

0 = 𝐶 𝑑Δ𝑣𝐴
𝑑𝑡 + 𝑖𝐴 =

= 𝐶 𝑑Δ𝑣𝐴
𝑑𝑡 + 1

detR (𝑅𝐵𝐵 Δ𝑣𝐴 − 𝑅𝐴𝐵 Δ𝑣𝐵)
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⎧{{
⎨{{⎩

𝑅𝑒𝑞𝐶 𝑑Δ𝑣𝐴
𝑑𝑡 + Δ𝑣𝐴 = 𝑅𝐴𝐵

𝑅𝐵𝐵
Δ𝑣𝐵(𝑡) = −𝑅𝐴𝐵

𝑅𝐵𝐵
𝑣𝐵,0 ℎ(𝑡)

Δ𝑣𝐴(0) = 0 ,
with

𝑅𝑒𝑞 = detR
𝑅𝐵𝐵

= 6.8081 Ω

𝜏 = 𝑅𝑒𝑞𝐶 = 3.4041 ⋅ 10−3 𝑠
detR = 46.345 Ω2

The solution of the differential equation provides the difference of the tension through the capacitor w.r.t. the initial
steady condition

Δ𝑣𝐴(𝑡) = Δ𝑣𝐴,+∞ (1 − 𝑒− 𝑡
𝜏 ) ℎ(𝑡) ,

with Δ𝑣𝐴,+∞ = − 𝑅𝐴𝐵
𝑅𝐵𝐵

𝑣𝐵,0 = 2.2742 𝑉 . The voltage across the capacitor as a function of time 𝑡 thus reads

𝑣𝐴(𝑡) = 𝑣𝐴,0 + Δ𝑣𝐴(𝑡) =
= 𝑣𝐴,0 + Δ𝑣𝐴,+∞ (1 − 𝑒− 𝑡

𝜏 ) ℎ(𝑡) ,
so that the values

𝑣𝐴(0+) = 𝑣𝐴,0 = −20.69 𝑉
𝑣𝐴(+∞) = 𝑣𝐴,0 + Δ𝑉 = −20.69 𝑉 + 2.2742 𝑉 = −18.4158 𝑉

• Current through the capacitor.

𝑖𝐴(𝑡) = 1
detR (𝑅𝐵𝐵 Δ𝑣𝐴(𝑡) − 𝑅𝐴𝐵 Δ𝑣𝐵(𝑡)) =

= 1
detR [𝑅𝐵𝐵 (−𝑅𝐴𝐵

𝑅𝐵𝐵
𝑣𝐵,0) (1 − 𝑒− 𝑡

𝜏 ) ℎ(𝑡) + 𝑅𝐴𝐵 𝑣𝐵,0 ℎ(𝑡)] =

= 𝑅𝐴𝐵
detR𝑣𝐵,0𝑒− 𝑡

𝜏 ℎ(𝑡) .

so that the values

𝑖𝐴(0+) = 𝑅𝐴𝐵
detR𝑣𝐵,0 = −1.2414 Ω

46.908 Ω2 12.475 𝑉 = −0.334 𝐴
𝑖𝐴(+∞) = 𝑣𝐴,0 + Δ𝑉 = −20.69 𝑉 + 2.2742 𝑉 = 0.0 𝐴

or with 𝑖𝐴 = −𝐶 𝑑Δ𝑣𝐴
𝑑𝑡 …

• Current across the switch

𝑖𝐵(𝑡) = 1
𝑅𝐵𝐵

[𝑣𝐵(𝑡) − 𝑣𝐵,0 − 𝑅𝐵𝐴𝑖𝐴(𝑡)] =

= 1
𝑅𝐵𝐵

[ − 𝑣𝐵,0 − 𝑅𝐵𝐴
𝑅𝐴𝐵
detR𝑣𝐵,0𝑒− 𝑡

𝜏 ] ℎ(𝑡) =

= − 𝑣𝐵,0
𝑅𝐵𝐵

[1 + 𝑅𝐵𝐴𝑅𝐴𝐵
detR 𝑒− 𝑡

𝜏 ] ℎ(𝑡) .

so that the values

𝑖𝐵(0+) = − 𝑣𝐵,0
𝑅𝐵𝐵

[1 + 𝑅𝐵𝐴𝑅𝐴𝐵
detR ] = −𝑣𝐵,0𝑅𝐴𝐴

detR = − 7.0345 Ω
46.345 Ω2 12.475 𝑉 = −1.8929 𝐴

𝑖𝐵(+∞) = − 𝑣𝐵,0
𝑅𝐵𝐵

= −12.475 𝑉
6.8073 Ω = −1.8320 𝐴 .
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• Current 𝑖(𝑡)

𝑖(𝑡) = 𝑖0 − 0.4138 𝑖𝐴(𝑡) + 0.8966 𝑖𝐵(𝑡) =
= 𝑖0 + [−0.4138 𝑖𝐴,0+𝑒− 𝑡

𝜏 + 0.8966 (𝑖𝐵,+∞ + (𝑖𝐵,0+ − 𝑖𝐵,+∞)𝑒− 𝑡
𝜏 )] ℎ(𝑡) ,

so that

𝑖(0+) = 𝑖0 − 0.4138 𝑖𝐴,0+ + 0.8966 𝑖𝐵,0+ =
= −1.7214 𝐴 − 0.4138 (−0.334 𝐴) + 0.8966 (−1.8929 𝐴) = −3.2831 𝐴

𝑖(+∞) = 𝑖0 + 0.8966 𝑖𝐵,+∞ =
= −1.7214 𝐴 + 0.8966 (−1.8320 𝐴) = −3.3671 𝐴

Energy stored in the capacitor.

𝐸𝐶(𝑡) = 1
2𝐶𝑣2

𝐴(𝑡) ,

and for 𝑡 = 𝜏 ,

𝑣𝐴(𝑡) = 𝑣𝐴,0 + Δ𝑣𝐴,+∞ (1 − 𝑒− 𝑡
𝜏 ) ℎ(𝑡) =

= −20.69 𝑉 + 2.2742 𝑉 (1 − 𝑒− 𝑡
𝜏 ) ℎ(𝑡) ,

and thus 𝑣𝐴(𝜏) = −19.25 𝑉

𝐸𝐶(𝜏) = 0.5 ⋅ 5 ⋅ 10−4 𝐹 ⋅ (19.25 𝑉 )2 = 9.26 ⋅ 10−2 𝐽 .

Exercise 11.4.3 (Exam 2024-09-06, Exercise 1.)
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Solution

Equivalent 2-port circuit of the resistive network. Following the guidelines for the solution, a many-port Thevenin
equivalent circuit of the resistive part of the circuit is found, with two ports for interfacing with the capacitor (A) and
with the switch. The dynamical equation of the system is written in state-space representation, writing the voltage at the
ports and the unknown variable 𝑖(𝑡) as outputs; the capacitor contitutive equation is used to find the time evolution of the
system once the switch is closed

• open circuit

𝑣𝐴,0 = −𝑒 − 𝑅2 𝑎 = −5 𝑉 − 2 Ω ⋅ 5 𝐴 = −15 𝑉
𝑣𝐵,0 = −𝑒 = −5 𝑉

𝑖0 = 0 𝐴

• current generators at ports, internal generators off

𝑣𝐴 = 𝑅4(𝑖𝐴 + 𝑖𝐵) + 𝑅2𝑖𝐴
𝑣𝐵 = 𝑣𝐴 + 𝑅1𝑖𝐵 − 𝑅2𝑖𝐴 = 𝑅4(𝑖𝐴 + 𝑖𝐵) + 𝑅1𝑖𝐵

𝑖 = 𝑖𝐴 + 𝑖𝐵

and thus

𝑣𝐴 = 𝑣𝐴,0 + 𝑅𝐴𝐴𝑖𝐴 + 𝑅𝐴𝐵𝑖𝐵 = 𝑣𝐴,0 + (𝑅2 + 𝑅4) 𝑖𝐴 + 𝑅4 𝑖𝐵
𝑣𝐵 = 𝑣𝐵,0 + 𝑅𝐵𝐴𝑖𝐴 + 𝑅𝐵𝐵𝑖𝐵 = 𝑣𝐵,0 + 𝑅4 𝑖𝐴 + (𝑅1 + 𝑅4) 𝑖𝐵

𝑖 = 𝑖,0 + 𝑖/𝐴𝑖𝐴 + 𝑖/𝐵𝑖𝐵 = 0 𝐴 + 𝑖𝐴 + 𝑖𝐵

Initial conditions. Steady conditions with open switch follows from conditions 𝑖𝐵 = 0, and 𝑣𝐴 = 𝐿 𝑑𝑖𝐴
𝑑𝑡 = 0, solving

the equations for

𝑖𝐴(0−) = − 𝑣𝐴,0
𝑅𝐴𝐴

= −−15 𝑉
6 Ω = 2.5 𝐴

𝑣𝐵(0−) = −𝑣𝐵,0 + 𝑅𝐵𝐴 𝑖𝐴 = −𝑣𝐵,0 − 𝑅𝐵𝐴
𝑅𝐴𝐴

𝑣𝐴,0 = 5 𝑉 + 4 Ω
6 Ω15 𝑉 = 15 𝑉

𝑖(0−) = 𝑖,0 + 𝑖/𝐴𝑖𝐴 = 𝑖,0 −
𝑖/𝐴

𝑅𝐴𝐴
𝑣𝐴,0 = 0 𝐴 − −15 𝑉

6 Ω = 2.5 𝐴

Transient.
• switch closes at time 𝑡 = 0. Voltage across the switch as a function of time can be represented by the function

𝑣𝐵(𝑡) = 𝑣𝐵(0−) (1 − ℎ(𝑡))

= [𝑣𝐵,0 − 𝑅𝐵𝐴
𝑅𝐴𝐴

𝑣𝐴,0] (1 − ℎ(𝑡))

Δ𝑣𝐵(𝑡) = 𝑣𝐵(𝑡) − 𝑣𝐵,0 = −𝑣𝐵,0ℎ(𝑡) − 𝑅𝐵𝐴
𝑅𝐴𝐴

𝑣𝐴,0 (1 − ℎ(𝑡))

• dynamical equation of the inductor is written as a first order differential equation in the state variable of the inductor,
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𝑖𝐴(𝑡), after writing 𝑣𝐴 as a function of 𝑖𝐴 and the potentials at the ports,

𝑣𝐴 = 𝑣𝐴,0 + 𝑅𝐴𝐴𝑖𝐴 + 𝑅𝐴𝐵𝑖𝐵 =

= 𝑣𝐴,0 + 𝑅𝐴𝐴𝑖𝐴 + 𝑅𝐴𝐵
𝑅𝐵𝐵

(𝑣𝐵(𝑡) − 𝑣𝐵,0 − 𝑅𝐵𝐴𝑖𝐴) =

= detR
𝑅𝐵𝐵

𝑖𝐴 + 𝑣𝐴,0 + 𝑅𝐴𝐵
𝑅𝐵𝐵

(𝑣𝐵(𝑡) − 𝑣𝐵,0) =

= detR
𝑅𝐵𝐵

𝑖𝐴 + 𝑣𝐴,0 − 𝑅𝐴𝐵
𝑅𝐵𝐵

𝑣𝐵,0 ℎ(𝑡) − 𝑅𝐴𝐵
𝑅𝐵𝐵

𝑅𝐵𝐴
𝑅𝐴𝐴

𝑣𝐴,0(1 − ℎ(𝑡)) =

= detR
𝑅𝐵𝐵

𝑖𝐴 + detR
𝑅𝐴𝐴𝑅𝐵𝐵

𝑣𝐴,0 − 𝑅𝐴𝐵
𝑅𝐵𝐵

(𝑣𝐵,0 − 𝑅𝐵𝐴
𝑅𝐴𝐴

𝑣𝐴,0) ℎ(𝑡)

0 =𝐿𝑑𝑖𝐴
𝑑𝑡 + 𝑣𝐴

𝐿𝑑𝑖𝐴
𝑑𝑡 + detR

𝑅𝐵𝐵
𝑖𝐴 = − detR

𝑅𝐴𝐴𝑅𝐵𝐵
𝑣𝐴,0 + 𝑅𝐴𝐵

𝑅𝐵𝐵
(𝑣𝐵,0 − 𝑅𝐵𝐴

𝑅𝐴𝐴
𝑣𝐴,0) ℎ(𝑡)

with initial conditions 𝑖𝐴(0) = 𝑖𝐴(0−).
Numerical values

𝜏 = 𝐿
𝑅𝑒𝑞

= 0.1 𝐻
2.8 Ω = 3.57 ⋅ 10−2 𝑠

𝑅𝑒𝑞 = detR
𝑅𝐵𝐵

= 14 Ω2

5 Ω = 2.8 Ω

detR = 𝑅𝐴𝐴𝑅𝐵𝐵 − 𝑅𝐴𝐵𝑅𝐵𝐴 =
= (𝑅1 + 𝑅4)(𝑅2 + 𝑅4) − 𝑅2

4 = (30 − 16)Ω2 = 14 Ω2

• Current through the inductor.

𝑖𝐴(𝑡) = …

𝑖𝐴(0) = 𝑖𝐴(0−) = 2.5 𝐴

𝑖𝐴(+∞) = 1
𝑅𝑒𝑞

[−𝑣𝐴,0 + 𝑅𝐴𝐵
𝑅𝐵𝐵

𝑣𝐵,0] = 1
2.8 Ω [15 𝑉 + 4

5 (−5 𝑉 )] = 3.93 𝐴

• Current through the switch.

𝑖𝐵(𝑡) = 1
𝑅𝐵𝐵

(𝑣𝐵(𝑡) − 𝑣𝐵,0 − 𝑅𝐵𝐴𝑖𝐴(𝑡))

𝑖𝐵(0+) = 1
𝑅𝐵𝐵

(𝑣𝐵(0+) − 𝑣𝐵,0 − 𝑅𝐵𝐴𝑖𝐴(0+)) =

= 1
5 Ω (0 𝑉 + 5 𝑉 − 4 Ω ⋅ (2.5 𝐴)) = −1.00 𝐴

𝑖𝐵(+∞) = 1
𝑅𝐵𝐵

(𝑣𝐵(+∞) − 𝑣𝐵,0 − 𝑅𝐵𝐴𝑖𝐴(+∞)) =

= 1
5 Ω (0 𝑉 + 5 𝑉 − 4 Ω ⋅ (3.93 𝐴)) = −2.14 𝐴

• Current 𝑖𝑅4
.

𝑖𝑅4
(𝑡) = 𝑖𝐴(𝑡) + 𝑖𝐵(𝑡)

𝑖𝑅4
(0+) = 𝑖𝐴(0+) + 𝑖𝐵(0+) = 2.50 𝐴 − 1.00 𝐴 = 1.50 𝐴

𝑖𝑅4
(+∞) = 𝑖𝐴(+∞) + 𝑖𝐵(+∞) = 3.93 𝐴 − 2.14 𝐴 = 1.79 𝐴
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Exercise 11.4.4 (Exam 2024-07-22, Exercise 1.)

Solution - todo

Exercise 11.4.5 (Exam 2024-02-13, Exercise 1.)
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Solution - todo

11.4.2 Harmonic regime of linear electrical grids

Exercise 11.4.6 (Exam 2025-02-11, Exercise 2.)

Solution

First one-port equivalent Thevenin circuit of the circuit with port 𝐴 − 𝐵 is evaluated, then power flow in harmonic regime
is discussed.
Thevenin equivalent: voltage. With open circuit in 𝐴 − 𝐵, current 𝑎 flows in the lower branch and in impedence 𝑍1.
Clockwise loop currents 𝑖1 and 𝑖2 flows in the left and right loop respectively. Kirchhoff voltage laws in the left and right
loops give

0 = 𝑒1 − 𝑍𝐿(𝑖1 + 𝑎) − (𝑅1 + 𝑍𝐶)𝑖1
0 = −𝑒2 − 𝑍2(𝑖2 + 𝑎) − 𝑍3𝑖2

→
𝑖1 = 𝑒1 − 𝑍𝐿𝑎

𝑍𝐿 + 𝑍𝐶 + 𝑅1

𝑖2 = −𝑒2 + 𝑍2𝑎
𝑍2 + 𝑍3

and thus using Kirchhoff voltage law on the loop with nodes 𝐴 − 𝐵 and closing through 𝑍1 and 𝑅1,

𝑉𝑇 ℎ = 𝑅1𝑖1 + 𝑍1𝑎 = …

Thevenin equivalent: impedence. Opening circuit at the current generator, and replace tension generators with short
circuits, the equivalent impedence is

𝑍𝑇 ℎ = ((𝑍𝐶 + 𝑍𝐿) ∥ 𝑅1) + 𝑍1 .

Equivalent circuit. Kirchhoff voltage law on the equivalent circuit reads

0 = 𝑉𝑇 ℎ − 𝑍𝑇 ℎ𝑖 − 𝑍𝑥𝑖 = 0 ,
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and thus

𝐼 = 𝑉𝑇 ℎ
𝑍𝑇 ℎ + 𝑍𝑥

= …

Power. Complex power reads

𝑆 = 𝑉 𝐼∗ = 𝑍𝑥|𝐼|2 = 𝑍𝑥
|𝑍𝑇 ℎ + 𝑍𝑥|2 |𝑉𝑡ℎ|2 ,

Writing the impedence as 𝑍𝑥 = 𝑅𝑥 + 𝑖𝑋𝑥, the active power reads

𝑃 = 𝑅𝑥
(𝑅𝑇 ℎ + 𝑅𝑥)2 + (𝑋𝑇 ℎ + 𝑋𝑥)2 |𝑉𝑇 ℎ|2 .

With the physical constraints 𝑅 ≥ 0, the problem is a constrained optimization problem of finding the maximum value
of the function 𝑃(𝑅𝑥, 𝑋𝑥) subject to the constraint 𝑅𝑥 ≥ 0,

find max
𝑅𝑥,𝑋𝑥

𝑃(𝑅𝑥, 𝑋𝑥) s.t. 𝑅𝑥 ≥ 0 .

The denominator is the sum of two non negative terms, one function of 𝑅𝑥 and one function of 𝑋𝑥. The independent
variable 𝑋𝑥 only appears in this term at the denominator, so that this term must vanish at the solution of the optimization
problem, and thus

𝑋𝑥 = −𝑋𝑇 ℎ .

The remaining term is a function of 𝑅𝑥 only and proportional to

𝑓(𝑅𝑥) = 𝑅𝑥
(𝑅𝑇 ℎ + 𝑅𝑥)2 .

Local extremes of this function is attained where

0 = 𝑓 ′(𝑅𝑥) = (𝑅𝑇 ℎ + 𝑅𝑥)2 − 2𝑅𝑥(𝑅𝑇 ℎ + 𝑅𝑥))
(𝑅𝑇 ℎ + 𝑅𝑥)4 =

= 𝑅2
𝑇 ℎ − 𝑅2

𝑥
(𝑅𝑇 ℎ + 𝑅𝑥)4

and thus, within the physical limit of the problem, the local and global maximum of the function (check that 𝑓″(𝑅𝑥) < 0),
is attained for

𝑅𝑥 = 𝑅𝑇 ℎ

𝑍𝑥 = 𝑅𝑇 ℎ − 𝑖𝑋𝑇 ℎ

and the maximum active power is

𝑃𝑚𝑎𝑥 = 𝑃(𝑍𝑥) = |𝑉𝑇 ℎ|2
4𝑅𝑇 ℎ

.

while the reactive power in this condition reads

𝑄 = − 𝑋𝑇 ℎ
4𝑅2

𝑇 ℎ
|𝑉𝑇 ℎ|2 .

Exercise 11.4.7 (Exam 2025-02-11, Exercise 3.)
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Solution

First power flow in harmonic regime is used to calculate load impedence, then the electrical circuit is solved, and the
power on the tension generator is computed.
Load impedence 𝑍𝐿. Load impedence appears in the load constitutive equation 𝑉𝐿 = 𝑍𝐿𝐼𝐿, and can be evalauted from
data about complex power,

𝑆𝐿 = |𝑆𝐿|𝑒𝑖𝜙𝐿 = 𝑉𝐿𝐼∗
𝐿 = 𝑍𝐿|𝐼|2 = 1

𝑍∗
𝐿

|𝑉𝐿|2

𝑍𝐿 = |𝑉𝐿|2
|𝑆𝐿| 𝑒𝑖𝜑𝐿

Current 𝐼𝑠. From data of load power, it’s possible to evaluate the current 𝐼𝑠. The current 𝐼𝐿 through the load reads

𝑆𝐿 = 𝑉𝐿𝐼∗
𝐿 → 𝐼𝐿 = 𝑆∗

𝐿
𝑉 ∗

𝐿
= |𝑆𝐿|

|𝑉𝐿| 𝑒
𝑖(−𝜙𝐿+𝜙𝑉 )

The three parallel sides act as current divider so that

𝐼𝐿 = (𝑅3 + 𝑍𝐿)−1

(𝑅3 + 𝑍𝐿)−1 + ((𝑖𝑋1) ∥ (𝑅2 + 𝑖𝑋2))−1 𝐼𝑠

and thus

𝐼𝑠 = |𝐼𝑠|𝑒𝑖𝜑𝐼𝑠 = …

Equivalent circuit. The impedence of the circuit powered by the tension generatore is

𝑍𝑒𝑞 = 𝑅1 + (𝑖𝑋1 ∥ (𝑅2 + 𝑖𝑋2) ∥ (𝑅3 + 𝑍𝐿)) .

Given the equivalent impedance, and the current 𝐼𝑠 the voltage across the tension generator is

𝐸𝑠 = 𝑍𝑒𝑞𝐼𝑠 = |𝐸𝑠|𝑒𝑖𝜑𝐸𝑠 … .

and the power factor is cos𝜑𝑠 = …, where

𝜑𝑠 = 𝜑𝐸𝑠
− 𝜑𝐼𝑠

= … .
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Exercise 11.4.8 (Exam 2025-01-22, Exercise 2.)

Solution

First one-port equivalent Thevenin circuit of the circuit with port 𝐴 − 𝐵 is evaluated, then the equivalent circuit is solved
to find the tension 𝑣(𝑡) across the current generator, and power flow in harmonic regime is discussed.
Thevenin equivalent: voltage. With an open circuit, the network can be split into two parts: the triangle in the upper-left
side and the section in the right part.
In the triangular part, a current 𝐼𝑎 flows in counter-clockwise direction, while current 𝐼𝑏 flows in the right part in clockwise
direction,

𝐼𝑎 = 𝐸1
𝑍1 + 𝑍2

𝐼𝑏 = 𝐸2 + 𝑖Ω𝐿5𝐴2
𝑍4 + 𝑍5 + 𝑍3

as

𝐸2 + (𝑍4 + 𝑍3 − 𝑖 1
Ω𝐶5

+ 𝑖Ω𝐿5⏟⏟⏟⏟⏟⏟⏟
=𝑍5

)𝐼𝑏 + 𝑖Ω𝐿5𝐴2 = 0 .

with 𝑍𝑘 being the impedence of the 𝑘-th side. Thevenin voltage thus reads

𝑉𝑇 ℎ = 𝐸2 − 𝑍3𝐼𝑏 + 𝑍2𝐼𝑎

Thevenin equivalent: impedence. Equivalent impedence reads

𝑍𝑇 ℎ = (𝑍1 ∥ 𝑍2 + (𝑍3 ∥ (𝑍4 + 𝑍5)))

Equivalent circuit. Prescribed current 𝐴1 flows in the equivalent circuit, and the voltage across the current generator is
evaluated with Krichhoff voltage law

𝑉𝐴1
− 𝑉𝑇 ℎ − 𝑍𝑇 ℎ𝐴1 = 0 ,
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𝑉𝐴1
= 𝑉𝑇 ℎ + 𝑍𝑇 ℎ𝐴1 = |𝑉𝐴|𝑒𝑖𝜑𝑉𝐴1 .

Signal in time is reconstructed using using the relation between effective and maximum amplitude of the oscillation and
evaluating the real part of the signal |𝑉𝐴1

|𝑒𝑖(Ω𝑡+𝜑𝑉𝐴1
)

𝑣𝐴1
(𝑡) =

√
2|𝑉𝐴1

| cos(Ω𝑡 + 𝜑𝑉𝐴1
) .

Poer. Using definitions of power in circuits in harmonic regime,

𝑆𝐴1
= 𝑉𝐴1

𝐼∗
𝐴1

|𝑆𝐴1
| = |𝑉𝐴1

||𝐼𝐴1
|

𝑃𝐴1
= re{𝑆𝐴1

}
𝑄𝐴1

= im{𝑆𝐴1
}

Exercise 11.4.9 (Exam 2024-09-06, Exercise 2.)

Solution - todo

Exercise 11.4.10 (Exam 2024-07-22, Exercise 2.)

Solution - todo
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11.4.3 Three-phase electrical circuits in harmonic regime

Guidelines for solution
Analyse the network as a standard configuration of a three-phase network (star-star,…) and rely on results derived for
three-phase circuits.
As an example, for a star-star configuration:

1. evaluate load impedances, impedances in parallel with the generators, interconnections between phases
2. evaluate voltage difference across the centers of the stars, 𝑣𝐴𝐵

3. once 𝑣𝐴𝐵 is known, it should be easier to evaluate currents and voltages in the grid with KCL and KVL
4. use relations of power in harmonic regime, to answer the questions about power: just remember the difference

between maximum and effective values, and that a wattmeter measures the active power

Exercise 11.4.11 (Exam 2024-09-06, Exercise 3.)

Solution

This network is a star-star connection with impedances

𝑍𝑔 = (𝑅1 + 𝑠𝐿1) ∥ 1
𝑠𝐶1

𝑔 = 1 ∶ 3

𝑍4 = 𝑅2 + 1
𝑠𝐶2

and inter-connection between phases 2 and 3 with impedance 𝑍4.
Voltage 𝑣𝐴𝐵.

𝑣𝐴𝐵 =
∑3

𝑔=1 𝑌𝑔 𝑒𝑔

∑4
𝑘=1 𝑌4
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Generation and loads are equilibrated, and thus ∑3
𝑔=1 𝑌𝑔 𝑒𝑔 = 0, and 𝑣𝐴𝐵 = 0.

Current 𝑖𝑍2
. As 𝑣𝐴𝐵 = 0, then 𝑖𝑍2

= 0, as in general it whould be 𝑖𝑍2
= 𝑣𝐴𝐵

𝑅2+ 1
𝑠𝐶2

.

Current 𝑖𝑍4
. With KVL on the loop with the two tension generators 𝑒2, 𝑒3 closed with 𝑍4

0 = 𝑒3 + 𝑍4𝑖𝑍4
− 𝑒2

→ 𝑖𝑍4
= 𝑒2 − 𝑒3

𝑍4

Currents 𝑖𝑒2
. Current 𝑖𝑒2

through the generator are evaluated through KVL between the centers of the stars,

0 = 𝑒2 − 1
1

𝑅1+𝑠𝐿1
+ 𝑠𝐶1

𝑖𝑒2
− 𝑣𝐴𝐵

→ 𝑖𝑒2
= [ 1

𝑅1 + 𝑠𝐿1
+ 𝑠𝐶1] 𝑒2

Powers of generator 2.

𝑆2 = 𝑉2𝐼∗
2

𝐴2 = |𝑆2|
𝑃2 = re{𝑆2}
𝑄2 = im{𝑆2} ,

using the effective values of tension and current 𝑉2, 𝐼2.

Exercise 11.4.12 (Exam 2024-07-22, Exercise 3.)
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Solution

This network is a star-star connection with impedances

𝑍1 = (𝑅1 + 𝑗𝑋𝐶1
) ∥ 𝑅2

𝑍2 = 0
𝑍3 = (𝑅3 + 𝑗𝑋𝐿2

) ∥ 𝑗𝑋𝐿1

𝑍4 = 𝑗𝑋𝐶2

and inter-connection between phase 3 and the netural with resistance 𝑅4, before 𝑍4, and thus in parallel with the
generator 3.
Voltage 𝑣𝐴𝐵. As 𝑍2 = 0, it’s not possible to directly use

𝑣𝐴𝐵 =
∑3

𝑔=1 𝑌𝑔 𝑒𝑔

∑4
𝑘=1 𝑌4

,

or this must be used with the limit 𝑌2 → +∞, and thus

𝑣𝐴𝐵 = 𝑒2 .

Wattmeter tension 𝑣𝑊 . KVL with the generators 2 and 3,

𝑣𝑊 = 𝑒2 − 𝑒3 .

Wattmeter current 𝑖𝑤 = 𝑖𝑒2
. KCL on the center of generation star, 0 = 𝑖𝑒1

+ 𝑖𝑒2
+ 𝑖3 + 𝑖4, with

𝑖𝑒1
= 1

𝑍1
(𝑒1 − 𝑣𝐴𝐵)

𝑖3 = 1
𝑍3

(𝑒3 − 𝑣𝐴𝐵)

𝑖4 = − 1
𝑍4

𝑣𝐴𝐵 ,

being 𝑖3 = 𝑖𝑒3
+ 𝑖𝑅4

the sum of the current in the parallel connection on the branch 3 of the generation. Thus, current
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𝑖𝑒2
reads

𝑖𝑒2
= −𝑖𝑒1

− 𝑖3 − 𝑖4 =

= − 𝑒1
𝑍1

− 𝑒3
𝑍3

+ ( 1
𝑍1

+ 1
𝑍3

+ 1
𝑍4

) 𝑣𝐴𝐵

Wattmeter. Wattmeter reading provides the active power

𝑃𝑤 = re{𝑆𝑤} = re{𝑣𝑤𝑖∗
𝑤} .

Power on 𝐶2. Current and voltage across 𝐶2 are

𝑖𝐶2
= 𝑖4

𝑣𝐶2
= 𝑍𝐶2

𝑖𝐶2
= 1

𝑠𝐶2
𝑖𝐶2

,

and the complex power is

𝑠 = 𝑉𝐶2
𝐼∗

𝐶2
.

Exercise 11.4.13 (Exam 2024-06-19, Exercise 1.)
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Solution

This network is a star-star connection with impedances

𝑍1 = (𝑅2 + 𝑗𝑋𝐿2
) ∥ (𝑗𝑋𝐶1

)
𝑍2 = (𝑅1 ∥ 0)
𝑍3 = (𝑅3 + 𝑗𝑋𝐶2

) ∥ 𝑗𝑋𝐿1

with 𝐿2 and 𝑅4 in parallel with generator 𝑒2. As 𝑅1 is in parallel with a short-circuit in 𝑍2, this impedance is zero and
as it is the current through 𝑅1. There’s no neutral.
Voltage 𝑣𝐴𝐵. As 𝑍2 = 0 (see previous exercise), the voltage between the centers of the stars is

𝑣𝐴𝐵 = 𝑒2 .

Wattmeter tension 𝑣𝑊 . KVL with the generators 2 and 3,

𝑣𝑊 = 𝑒1 − 𝑒3 .

Wattmeter current 𝑖𝑤 = 𝑖2. KCL on the center of generation star, 0 = 𝑖𝑒1
+ 𝑖2 + 𝑖𝑒3

, with

𝑖𝑒1
= 1

𝑍1
(𝑒1 − 𝑒2)

𝑖𝑒3
= 1

𝑍3
(𝑒3 − 𝑒2)

being 𝑖2 = 𝑖𝑒2
+ 𝑖𝐿1

+ 𝑖𝑅4
the sum of the current in the parallel connection on the branch 2 of the generation. Thus,

current 𝑖𝑤 reads

𝑖𝑤 = 𝑖2 = −𝑖𝑒1
− 𝑖𝑒3

=

= 1
𝑍1

(𝑒2 − 𝑒1) + 1
𝑍3

(𝑒2 − 𝑒3)

Wattmeter. Wattmeter reading provides the active power

𝑃𝑤 = re{𝑆𝑤} = re{𝑣𝑤𝑖∗
𝑤} .

Power of tension generator 𝑒1.

𝑠𝑒1
= 𝑒2𝑖∗

𝑒2
.

…

Exercise 11.4.14 (Exam 2024-02-13, Exercise 2.)

Solution - todo
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11.4.4 Electromagnetic circuits

Guidlines for solution
1. Find the equivalent magnetic network of the inductive part of the system to find the relation,

v(𝑡) = ̇𝝍(𝑡) = 𝑑
𝑑𝑡 (L i(𝑡)) ,

between the tensions and the currents at the ports of the electromagnetic system, usually under the assumpsions of
• no dispersed fluxes,
• linear constitutive equation of the ferromagnetic medium, 𝑏 = 𝜇Feℎ, so that hysteresis is neglected
• permeability of the ferromagnetic much larger than the permeability of free space, 𝜇Fe ≫ 𝜇0, so that the re-
luctance of the ferrmagnetic medium is negligible if compared with the reluctance of the air gaps. Relucatnce
of air gaps reads

𝜃 = 𝛿
𝜇0𝐴 .

In stationary regime 𝑑
𝑑𝑡 ≡ 0, and thus inductors act as short-circuits.

2. Use the relation v = 𝑑
𝑑𝑡 (L i) in the electric network to solve the electromagnetic system

3. Find all the other physical quantities needed, remembering that the volume density of electromagnetic energy in
media, under the assumption of linear media, is

𝑢 = 1
2𝜇 ∣ ⃗𝑏( ⃗𝑟, 𝑡)∣2 + 1

2𝜀 | ⃗𝑒( ⃗𝑟, 𝑡)|2 .

Volume density must be integrated over the regions of space where it’s not negligible, like air gaps.

Exercise 11.4.15 (Exam 2025-01-22, Exercise 3.)
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Solution

1. Equivalent magnetic network of the inductive part of the system. The equivalent reluctance seen by the magnetic
flux generator 𝑚𝐴 = 𝑁𝑖𝐴 is

𝜃𝑒𝑞 = 𝜃2 + (𝜃1 ∥ 𝜃3) .

and thus the flux through it reads

𝜙𝐴 = 𝑚𝐴
𝜃𝑒𝑞

= 𝑁
𝜃𝑒𝑞

𝑖 = …

The parallel part of the circuit acts as a current divider and thus magnetic fluxes through gaps 1 and 3 are

𝜙1 = 𝜃3
𝜃1 + 𝜃3

𝜙𝐴 = 𝜃3
𝜃1 + 𝜃3

𝑁
𝜃𝑒𝑞

𝑖𝐴 = …

𝜙3 = 𝜃1
𝜃1 + 𝜃3

𝜙𝐴 = 𝜃1
𝜃1 + 𝜃3

𝑁
𝜃𝑒𝑞

𝑖𝐴 = …
(11.2)

Faraday’s law provides the relation between the voltage and the concatenated flux,

𝑣𝐴 = ̇𝜓 = 𝑁 ̇𝜙𝐴 = 𝑁2

𝜃𝑒𝑞

𝑑𝑖𝐴
𝑑𝑡 = 𝐿𝑒𝑞

𝑑𝑖
𝑑𝑡 ,

where the equivalent inductance of the magnetic circuit

𝐿𝑒𝑞 = …
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has been introduced. This relation becomes 𝑣𝐴 = 0 in steady regime.
2. The electric network can be solved evaluating Thevenin equivalent network at the inductive port,

𝑣𝑇 ℎ = 𝑅3
𝑅2 + 𝑅3

𝑒 + 𝑅1𝑎

𝑅𝑇 ℎ = 𝑅1 + 𝑅2 + (𝑅3 ∥ 𝑅4) ,

Thus the KVL on the equivalent complete network is

𝑣𝑇 ℎ − 𝑅𝑇 ℎ𝑖𝐴 − 𝐿𝑑𝑖𝐴
𝑑𝑡 = 0 .

In steady regime, 𝑑
𝑑𝑡 ≡ 0, and thus

𝑖𝐴 = 𝑣𝑇 ℎ
𝑅𝑇 ℎ

= … (11.3)

3. Energy stored in the magnetic field is the sum (integral) of the contribution 1
2𝜇 ∣ ⃗𝑏∣2 in electromagnetic energy

density, 𝑢. With the assumption of negligible reluctance of the ferromagnetic medium,

∫
𝑉

1
2𝜇 ∣ ⃗𝑏∣2 ∼ ∫

𝑉𝑔𝑎𝑝𝑠

1
2𝜇0

∣ ⃗𝑏( ⃗𝑟, 𝑡)∣2 =

∼ ∑
𝑘∈gaps

1
2𝜇0

𝑏2
𝑘 𝑉𝑘 =

∼ ∑
𝑘∈gaps

1
2𝜇0

( 𝜙𝑘
𝐴𝑘

)
2

𝐴𝑘 𝛿𝑘 =

∼ ∑
𝑘∈gaps

1
2

𝛿𝑘
𝜇0𝐴𝑘

𝜙2
𝑘 =

∼ ∑
𝑘∈gaps

1
2𝜃𝑘𝜙2

𝑘 = … .

Fluxes can be evaluated with relations (11.2), once the current 𝑖𝐴 is known, from (11.3).
4. After solving the electric circuit (e.g. introducing two loop currents in the left and right loops), powers through

resistors and generators read

𝑃𝑅1
= 𝑅1 𝑖2

1 = 𝑅1(𝑖𝐴 − 𝑎)2 = …
𝑃𝑅2

= 𝑅2 𝑖2
2 = 𝑅2𝑖2

𝐴 = …
𝑃𝑅3

= 𝑅3 𝑖2
3 = 𝑅3(𝑖𝐴 − 𝑖𝑒,1)2 = …

𝑃𝑅4
= 𝑅4 𝑖2

4 = 𝑅4(𝑖𝐴 + 𝑖𝑒,1)2 = …

𝑃𝑎 = 𝑣𝑎𝑎 = 𝑅1(𝑖𝐴 − 𝑎) 𝑎 = …
𝑃𝑒 = 𝑒𝑖𝑒 = 𝑒(−𝑖𝐴 + 𝑖𝑒,1) = …

with 𝑖𝑒,1 = 𝑒
𝑅3+𝑅4

.

Exercise 11.4.16 (Exam 2024-06-19, Exercise 2.)
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Solution - todo

Exercise 11.4.17 (Exam 2024-02-13, Exercise 1a.)

Solution - todo
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CHAPTER

TWELVE

GREEN’S FUNCTION METHOD

12.1 Poisson equation

General Poisson’s problem

{−∇2u(r, 𝑡) = f(r, 𝑡)
+ b.c.

with common boundary conditions

{u = g on 𝑆𝐷
n̂ ⋅ ∇u = h on 𝑆𝑁

over Dirichlet and Neumann regions of the boundary.
Poisson’s problem for Green’s function, in infinite domain

−∇2
r𝐺(r; r0) = 𝛿(r − r0)

Green’s function method

𝐸(r0, 𝑡)𝑢𝑖(r0, 𝑡) = ∫
r∈Ω

𝑢𝑖(r, 𝑡)𝛿(r − r0) =

= − ∫
r∈Ω

𝑢𝑖(r, 𝑡)∇2
r𝐺(r − r0) =

= − ∫
r∈Ω

∇r ⋅ (𝑢𝑖∇r𝐺 − 𝐺∇r𝑢𝑖) − ∫
r∈Ω

𝐺∇2𝑢𝑖 =

= − ∮
r∈𝜕Ω

n̂ ⋅ (𝑢𝑖∇r𝐺 − 𝐺∇r𝑢𝑖) + ∫
r∈Ω

𝐺(r − r0)𝑓𝑖(r, 𝑡).

An integro-differential boundary problem can be written using boundary conditions. As an example, using Dirichlet and
Neumann boundary conditions, the integro-differential problem reads

𝐸(r0, 𝑡)u(r0, 𝑡) + ∫
r∈𝑆𝑁

u(r, 𝑡) n̂ ⋅ ∇r𝐺(r − r0) − ∫
r∈𝑆𝐷

𝐺(r − r0) n̂ ⋅ ∇ru(r, 𝑡) =

= − ∫
r∈𝑆𝐷

g(r, 𝑡) n̂ ⋅ ∇r𝐺(r − r0) + ∫
r∈𝑆𝑁

𝐺(r − r0) h(r, 𝑡) + ∫
r∈Ω

𝐺(r − r0) f(r, 𝑡).

Green’s function of the Poisson-Laplace equation reads

𝐺(r; r0) = 1
4𝜋

1
|r − r0| .
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Green’s function of the Laplace equation

−∇2𝐺 = 0 for r ≠ r0

Solutions with spherical symmetry,

0 = ∇2𝐺 = 1
𝑟2 (𝑟2𝐺′)′ → 𝐺′(𝑟) = 𝐴

𝑟2 → 𝐺(𝑟) = −𝐴
𝑟 + 𝐵

Choosing 𝐵 = 0 s.t. 𝐺(𝑟) → 0 as 𝑟 → ∞, and integrating over a sphere centered in 𝑟 = 0 to get 𝐴 = − 1
4𝜋 ,

1 = ∫
𝑉

𝛿(𝑟) = − ∫
𝑉

∇2𝐺 = − ∮
𝜕𝑉

n̂ ⋅ ∇𝐺 = − ∮
𝜕𝑉

̂r ⋅ ̂r 𝐴
𝑟2 = −4𝜋 𝐴

12.2 Helmholtz equation

todo from Fourier to Laplace trasnform in the first lines of this section
A Helmholtz’s equation can be thouoght as the time Fourier transform of a wave equation,

⎧{{
⎨{{⎩

1
𝑐2 𝜕𝑡𝑡u(r, 𝑡) − ∇2u(r, 𝑡) = f(r, 𝑡)
+ b.c.
+ i.c. ,

Fourier transform in time of field u(r, 𝑡) reads

ũ(r, 𝜔) = ℱ{u(r, 𝑡)} = ∫
+∞

𝑡=−∞
u(r, 𝑡)𝑒−𝑖𝜔𝑡 𝑑𝜔

and, if u(r, 𝑡) is compact in time, Fourier transform of its time partial derivatives read

ℱ{u̇(r, 𝑡)} = ∫
+∞

𝑡=−∞
u̇(r, 𝑡)𝑒−𝑖𝜔𝑡 𝑑𝜔 =

= u(r, 𝑡)𝑒−𝑖𝜔𝑡∣+∞
𝑡=−∞ + 𝑖𝜔 ∫

+∞

𝑡=−∞
u(r, 𝑡)𝑒−𝑖𝜔𝑡 𝑑𝜔 =

= 𝑖𝜔ℱ{u(r, 𝑡)}

ℱ{𝜕𝑛
𝑡 u(r, 𝑡)} = (𝑖𝜔)𝑛ũ .

The differential problem in the transformed domain thus reads

−𝜔2

𝑐2 ũ − ∇2ũ = ̃f

Green’s function of Helmholtz’e equation reads

𝐺(r, 𝑠) = 𝛼+ 𝑒 𝑠|r−r0|
𝑐

|r − r0| + 𝛼− 𝑒− 𝑠|r−r0|
𝑐

|r − r0|

with 𝛼+ + 𝛼− = 1
4𝜋 .

Being the Laplace transform,

ℒ{𝑓(𝑡)} = ∫
+∞

𝑡=0−
𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡 ,
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the Laplace transform of a causal function with time delay 𝜏 ≥ 0 reads

ℒ{𝑓(𝑡 − 𝜏)} = ∫
+∞

𝑡=0−
𝑓(𝑡 − 𝜏)𝑒−𝑠𝑡𝑑𝑡 = ∫

+∞

𝑧=−𝜏
𝑓(𝑧)𝑒−𝑠(𝑧+𝜏) 𝑑𝑧 = 𝑒−𝑠𝜏 ∫

+∞

𝑧=0
𝑓(𝑧)𝑒−𝑠𝑧 𝑑𝑧 = 𝑒−𝑠𝜏 ℒ{𝑓(𝑡)}

having used causality 𝑓(𝑡) = 0 for 𝑡 < 0. Laplace transform of Dirac’s delta 𝛿(𝑡) reads

ℒ{𝛿(𝑡)} = ∫
+∞

𝑡=0−
𝛿(𝑡) 𝑑𝑡 = 1 ,

so that 𝑒−𝑠𝜏 = 𝑒−𝑠𝜏 1 = ℒ{𝛿(𝑡 − 𝜏)}.
Thus, Green’s function for the wave equation reads

𝐺(r, 𝑡; r0, 𝑡0) = 𝛼+ 𝛿 (𝑡 − 𝑡0 + |r−r0|
𝑐 )

|r − r0| + 𝛼− 𝛿 (𝑡 − 𝑡0 − |r−r0|
𝑐 )

|r − r0|

If 𝑡 ≥ 𝑡0, and 𝐺(r, 𝑡; r0, 𝑡0) connects the past 𝑡0 with the future 𝑡, the first term is not causal, and thus 𝛼+ = 0 and

𝐺(r, 𝑡; r0, 𝑡0) = 1
4𝜋

𝛿 (𝑡 − 𝑡0 − |r−r0|
𝑐 )

|r − r0| .

Green’s function of Helmholtz’s equation

𝑠2

𝑐2 𝐺 − ∇2𝐺 = 𝛿(𝑟)

𝐺(𝑟) = 𝛼𝑒𝑘𝑟 + 𝛽𝑒−𝑘𝑟

𝑟
Proof:

• Gradient

∇𝐺(𝑟) = ̂r𝜕𝑟𝐺 = ̂r𝛼(𝑘𝑟 − 1)𝑒𝑘𝑟 + 𝛽(−𝑘𝑟 − 1)𝑒−𝑘𝑟

𝑟2

• Laplacian

∇2𝐺(𝑟) = 1
𝑟2 (𝑟2𝐺′(𝑟))′ =

= 1
𝑟2 (𝛼(𝑘𝑟 − 1)𝑒𝑘𝑟 + 𝛽(−𝑘𝑟 − 1)𝑒−𝑘𝑟)′ =

= 1
𝑟2 (𝛼𝑘𝑒𝑘𝑟 + 𝛼𝑘2𝑟𝑒𝑘𝑟 − 𝛼𝑘𝑒𝑘𝑟 − 𝛽𝑘𝑒−𝑘𝑟 + 𝛽𝑘2𝑟𝑒−𝑘𝑟 + 𝛽𝑘𝑒−𝑘𝑟) =

= 1
𝑟 (𝛼𝑒𝑘𝑟 + 𝛽𝑒−𝑘𝑟) 𝑘2 = 𝑘2𝐺(𝑟) .

and thus 𝑘2𝐺(𝑟) − ∇2𝐺 = 0, for 𝑟 ≠ 0;
• Unity

1 = ∫
𝑉

𝛿(𝑟) = ∫
𝑉

(𝑘2𝐺 − ∇2𝐺) = ∫
𝑉

𝑘2𝐺 − ∮
𝜕𝑉

n̂ ⋅ ∇𝐺

the second term is the sum of two contributions of the form

∮
𝜕𝑉

n̂ ⋅ ∇𝐺± = ∮
𝜕𝑉

𝛼±(±𝑘𝑟 − 1)𝑒±𝑘𝑟

𝑟2 = 4𝜋𝛼±(±𝑘𝑟 − 1)𝑒±𝑘𝑟
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the first term is the sum of two contributions of the form

𝑘2 ∫
𝑉

𝐺(𝑟) = 𝑘2 ∫
𝑉

𝛼±𝑒±𝑘𝑟

𝑟 =

= 𝑘2𝛼± ∫
𝑟

𝑅=0
∫

𝜋

𝜙=0
∫

2𝜋

𝜃=0

𝑒±𝑘𝑅

𝑅 𝑅2 sin𝜙 𝑑𝑅 𝑑𝜙 𝑑𝜃 =

= 𝑘2𝛼± 4𝜋 ∫
𝑟

𝑅=0
𝑅 𝑒±𝑘𝑅 𝑑𝑅 .

the last integral can be evaluated with integration by parts

∫
𝑟

𝑅=0
𝑅 𝑒±𝑘𝑅 𝑑𝑅 = [ 1

±𝑘𝑒±𝑘𝑅𝑅]∣
𝑟

𝑅=0
∓ 1

𝑘 ∫
𝑟

𝑅=0
𝑒±𝑘𝑅 𝑑𝑅 =

= 1
±𝑘𝑒±𝑘𝑟𝑟 − 1

𝑘2 𝑒±𝑘𝑅 + 1
𝑘2 =

Thus summing everything together,

1 = 𝛼+ [4𝜋𝑘2 ( 𝑟
𝑘𝑒𝑘𝑟 − 1

𝑘2 𝑒𝑘𝑟 + 1
𝑘2 ) − 4𝜋 (𝑘𝑟 − 1) 𝑒𝑘𝑟] + 𝛼− [… ] =

= 4𝜋 (𝛼+ + 𝛼−) .

12.3 Wave equation

Wave equation general problem

⎧{{
⎨{{⎩

1
𝑐2 𝜕𝑡𝑡u(r, 𝑡) − ∇2u(r, 𝑡) = f(r, 𝑡)
+ b.c.
+ i.c.

Green’s problem of the wave equation

1
𝑐2 𝜕𝑡𝑡𝐺(r, 𝑡; r0, 𝑡0) − ∇2

r𝐺(r, 𝑡; r0, 𝑡0) = 𝛿(r − r0)𝛿(𝑡 − 𝑡0)

Integration by parts

𝐸(r𝛼, 𝑡𝛼)u(r𝛼, 𝑡𝛼) = ∫
𝑡∈𝑇

∫
r∈𝑉

𝛿(𝑡 − 𝑡𝛼)𝛿(r − r𝛼)u(r, 𝑡) =

= ∫
𝑡∈𝑇

∫
r∈𝑉

{ 1
𝑐2 𝜕𝑡𝑡𝐺 − ∇2

r𝐺}u =

= ∫
𝑡∈𝑇

∫
r∈𝑉

{ 1
𝑐2 [𝜕𝑡 (u𝜕𝑡𝐺 − 𝐺𝜕𝑡u) + 𝐺𝜕𝑡𝑡u] − ∇r ⋅ (∇r𝐺u − 𝐺∇ru) − 𝐺 ∇2

ru} =

= ∫
r∈𝑉

1
𝑐2 [u(r, 𝑡)𝜕𝑡𝐺(r, 𝑡; r𝛼, 𝑡𝛼) − 𝐺(r, 𝑡; r𝛼, 𝑡𝛼)𝜕𝑡u(r, 𝑡)] ∣

𝑡1

𝑡0

+

+ ∫
𝑡∈𝑇

∮
r∈𝜕𝑉

{−n̂(r, 𝑡) ⋅ ∇r𝐺(r, 𝑡; r𝛼, 𝑡𝛼)u(r, 𝑡) + 𝐺(r, 𝑡; r𝛼, 𝑡𝛼) n̂(r, 𝑡) ⋅ ∇ru(r, 𝑡)} +

+ ∫
𝑡∈𝑇

∫
r∈𝑉

𝐺(r, 𝑡; r𝛼, 𝑡𝛼) { 1
𝑐2 𝜕𝑡𝑡u(r, 𝑡) − ∇2

ru(r, 𝑡)}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=f(r,𝑡)
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∫
𝑡∈𝑇

∫
r∈𝑉

1
4𝜋

𝛿 (𝑡 − 𝑡𝛼 + |r−r𝛼|
𝑐 )

|r − r𝛼| f(r, 𝑡) = ∫
r∈𝑉 ∩𝐵|r−r𝛼|≤𝑐(𝑡𝛼−𝑡)

1
4𝜋|r − r𝛼| f(r, 𝑡𝛼 − |r − r𝛼|

𝑐 )

basics
Apr 30, 2025
1 min read
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CHAPTER

THIRTEEN

METODI NUMERICI

13.1 Elettrostatica

I problemi dell’elettrostatica sono governate dalle due equazioni di Maxwell per i campi e, d,

⎧{
⎨{⎩

∇ ⋅ d = 𝜌

∇ × e = 0 ,

dotate delle opportune condizioni al contorno ed equazioni costitutive. Per un materiale lineare isotropo, ad esempio,
d = 𝜀e. La condizione di irrotazionalità del campo elettrico, permette di scriverlo come gradiente di un potenziale
scalare, e = −∇𝑣, e di ottenere l’equazione di Poisson,

−∇ ⋅ (𝜀∇𝑣) = 𝜌 .

13.1.1 Sorgente

e(𝑟) = 𝑞𝑖
4𝜋𝜀

r − r𝑖
|r − r𝑖|3

e(r) = −∇r𝑣(r)

𝜀 𝑣(r) = 𝑞𝑖
4𝜋

1
|r − r𝑖|

13.1.2 Dipolo

Un dipolo è definito come due cariche di intensità uguale e contraria −𝑞2 = 𝑞1 = 𝑞 > 0, nei punti dello spazio 𝑃1,
𝑃2 = 𝑃1 + l, nelle condizioni limite |l| → 0, 𝑞 → ∞, in modo tale da avere 𝑞|l| finito, p = 𝑞l.
Il potenziale del dipolo è dato dal principio di sovrapposizione delle cause e degli effetti,

𝜀 𝑣(r) = − 𝑞
4𝜋

1
∣r − r0 + l

2 ∣ + 𝑞
4𝜋

1
∣r − r0 − l

2 ∣ =

= ...

= 𝑞
4𝜋 (− 1

|r − r0| + r − r0
|r − r0|3

⋅ l
2 + 1

|r − r0| + r − r0
|r − r0|3

⋅ l
2 + 𝑜(|l|)) =

= ...

= 1
4𝜋

r − r0
|r − r0|3

⋅ P ,
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avendo definito il vettore momento dipolo P = 𝑞l.
Polariazazione - Potenziale generato da una distribuzione di dipoli.

𝑑P = pΔ𝑉

𝜀𝑣𝑃 (r) = ∫
r0∈𝑉0

1
4𝜋

r − r0
|r − r0|3

⋅ p(r0) 𝑑𝑉0

𝜕𝑖|r|2 = 2𝑥𝑖
= 2|r|𝜕𝑖|r|

→ 𝜕𝑖|r| = 𝑥𝑖
|r|

𝜕𝑖|r|𝑛 = 𝑛|r|𝑛−1 𝜕𝑖|r| = 𝑛𝑥𝑖|r|𝑛−2

r − r0
|r − r0|3 = ∇r0

1
|r − r0|

r − r0
|r − r0|3 ⋅ p(r0) = ∇r0

1
|r − r0| ⋅ p(r0) =

= ∇r0
⋅ ( 1

|r − r0|p(r0)) − 1
|r − r0|∇r0

⋅ p(r0) =

e quindi

4 𝜋 𝜀𝑣𝑃 (r) = ∮
r0∈𝜕𝑉0

n̂(r0) ⋅ p(r0)
|r − r0| − ∮

r0∈𝑉0

∇r0
⋅ p(r0)

|r − r0|

I due contributi hanno la forma di sorgenti, essendo termini proporzionali a 1
|r−r0| . Il potenziale dovuto alla densità di

volume di dipoli equivale alla somma dei due contributi delle cariche di:
• polarizzazione di superficie 𝜎𝑝 = n̂ ⋅ p
• polarizzazione di volume 𝜌𝑝 = −∇ ⋅ p

Oss. Se la polarizzazione è uniforme nel volume, il contributo della polarizzazione nel volume si annulla e rimane solo il
contributo della polarizzazione sul contorno del volume.
Oss. Legge di Gauss per il campo elettrico,

∇ ⋅ e = 1
𝜀0

𝜌 =

= 1
𝜀0

(𝜌𝑙 + 𝜌𝑝) =

= 1
𝜀0

(𝜌𝑙 − ∇ ⋅ p)

∇ ⋅ (𝜀0e + p) = 𝜌𝑙
∇ ⋅ d = 𝜌𝑙
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